
DUNE PDELab Tutorial 01
Conforming Finite Element Method for a

Nonlinear Poisson Equation

DUNE/PDELab Team

February 5, 2021

Contents
1 Introduction 2

2 Problem Formulation 2

3 Finite Element Method 3
3.1 Algebraic Problem . 3
3.2 Finite Element Space . 4
3.3 Incorporation of Dirichlet Boundary Conditions 6
3.4 Element-wise Computations . 7

4 Realization in PDELab 9
4.1 Ini-File . 10
4.2 Function main . 11
4.3 Function driver . 13
4.4 The Problem Class . 16
4.5 Local Operator NonlinearPoissonFEM 17
4.6 Running the Example . 22

5 Outlook 23

1

1 Introduction
In this tutorial we extend tutorial 00 in the following ways:

1) Solve a nonlinear stationary partial differential equation (PDE).

2) Use conforming finite element spaces of arbitrary order.

3) Use different types of (conforming) meshes (simplicial, cubed and mixed).

4) Use multiple types of boundary conditions.

Combined with the fact that the implementation works in any dimension (note: it
is not claimed to be efficient in high dimension d > 3) this comprises already a
relatively large space of different methods, so the example illustrates the flexibility
of PDELab. Moreover, the finite element method developed in this tutorial will
serve as a building block for instationary problems, adaptive mesh refinement and
parallel solution in subsequent tutorials.

Depends On

This tutorial depends on tutorial 00 which discusses piecewise linear elements on
simplicial elements. It is assumed that you have worked through tutorial 00 before.

2 Problem Formulation
Here we consider the following nonlinear Poisson equation with Dirichlet and Neu-
mann boundary conditions:

−∆u+ q(u) = f in Ω, (1a)
u = g on ΓD ⊆ ∂Ω, (1b)

−∇u · ν = j on ΓN = ∂Ω \ ΓD. (1c)

Ω ⊂ Rd is a domain, q : R→ R is a given, possibly nonlinear function and f : Ω→ R
is the source term and ν denotes the unit outer normal to the domain.

The weak formulation of this problem is derived by multiplication with an appro-
priate test function and integrating by parts. This results in the abstract problem:

Find u ∈ U s.t.: rNLP(u, v) = 0 ∀v ∈ V, (2)

with the continuous residual form

rNLP(u, v) =

∫
Ω

∇u · ∇v + (q(u)− f)v dx+

∫
ΓN

jv ds

and the function spaces U = {v ∈ H1(Ω) : “v = g” on ΓD} and V = {v ∈ H1(Ω) :
“v = 0” on ΓD}. We assume that q is such that this problem has a unique solution.

2

3 Finite Element Method
The finite element method [7, 2, 5, 3, 1, 6, 4] replaces the function spaces U and
V by finite dimensional approximations defined on a finite element mesh. Before
describing exactly how these spaces are constructed let us explore the consequences
of this.

3.1 Algebraic Problem

Any finite-dimensional function space is spanned by a basis. So, assume that

Uh = span{φ1, . . . , φn}, Vh = span{ψ1, . . . , ψm}

are corresponding sets of basis functions for Uh and Vh. Expanding the solution
uh =

∑n
j=1(z)jφj in the basis and hereby introducing the coefficient vector z ∈ Rn

we can reformulate the problem as

Find uh ∈ Uh s.t.: r(uh, v) = 0 ∀v ∈ Vh

⇔ r

(
n∑
j=1

(z)jφj, ψi

)
= 0 ∀i = 1, . . . ,m

⇔ R(z) = 0,

where R : Rn → Rm given by Ri(z) = rh

(∑n
j=1(z)jφj, ψi

)
is a nonlinear, vector-

valued function.
The solution of the nonlinear algebraic equation R(z) = 0 is typically computed

in an iterative fashion using e.g. a fixed-point iteration of the form

z(k+1) = z(k) − λkW (z(k))R(z(k)). (3)

Here λk is a damping factor andW (z(k)) is a preconditioner matrix, e.g. in Newton’s
method (see e.g. [1]) one has

W (z(k)) = (J(z(k)))−1 where (J(z(k)))i,j =
∂Ri

∂zj
(z(k))

(we now assumed that n = m and that the Jacobian J(z(k)) is invertible). Newton’s
method requires the solution of the linear system J(z(k))w = R(z(k)) in each step
which could be done using either direct or iterative methods. The implementation
of Newton’s method requires the following algorithmic building blocks:

i) residual evaluation R(z),

ii) Jacobian evaluation J(z) (or an approximation of it),

iii) matrix-free Jacobian application J(z)w (or an approximation).

Only one of the methods ii) and iii) is required depending on the chosen solution
procedure.

3

A Note on Matrix-free Evaluation

The matrix-free multiplication of the Jacobian J(z) with a vector w is with the
definitions above:

(J(z)w)i =
n∑
j=1

(J(z))i,j(w)j =
n∑
j=1

∂

∂zj
rh

(
n∑
l=1

(z)lφl, ψi

)
(w)j.

At this point one may exploit the local support of basis functions in order to compute
only the partial derivatives that are nonzero.

In the linear case, for comparison, one has rh(u, v) = ah(u, v) − lh(v) where ah
is a bilinear form and lh is a linear form. Then, the application of the Jacobian can
be simplified as

(J(z)w)i =
n∑
j=1

∂

∂zj
rh

(
n∑
l=1

(z)lφl, ψi

)
(w)j

=
n∑
j=1

∂

∂zj

(
ah

(
n∑
l=1

(z)lφl, ψi

)
− lh(ψi)

)
(w)j

=
n∑
j=1

∂

∂zj

(
n∑
l=1

(z)lah(φl, ψi)

)
(w)j

=
n∑
j=1

ah(φj, ψi)(w)j = ah

(
n∑
j=1

(w)jφj, ψi

)
= (Aw)i

where (A)i,j = ah(φj, ψi) is the stiffness matrix which is independent of z. For this
reason there exist two different functions for matrix-free operator application, one
for the linear case providing only the argument w and one for the nonlinear case
providing two arguments z and w.

Note also that it is advantageous to separate in the implementation of the residual
form the part that depends on trial and test functions, and which consequently
contributes to the Jacobian, and the part that only depends on the test functions
and which does not contribute to the Jacobian.

3.2 Finite Element Space

The detailed construction of the basis functions φj involves the finite element mesh.
Wrapping up the notation from tutorial 00, a finite element mesh consists of

i) A set of vertices Xh = {x1, . . . , xN} and elements Th = {T1, . . . , TM}. Elements
are closed and connected sets of points with non-intersecting interior partition-
ing the domain Ω.

ii) A partitioning of the vertex index set Ih = {1, . . . , N} into indices of interior
and boundary vertices

Ih = I inth ∪ I∂Ω
h , I inth = {i ∈ Ih : xi ∈ Ω}, I∂Ω

h = {i ∈ Ih : xi ∈ ∂Ω}.

4

iii) For every element T ∈ Th a local-to-global map

gT : {0, . . . , nT − 1} → Ih

associating a local number of a corner of element T with a global vertex number.
nT is the number of corners of element T .

iv) For every element T ∈ Th an element transformation map

µT : T̂ → T

mapping the corresponding reference element to T . The element transformation
map need not be affine but is assumed to be sufficiently differentiable with
invertible Jacobian as well as consistent in the sense ∀i ∈ {0, . . . , nT − 1} :
µT (x̂i) = xgT (i).

The conforming finite element space of degree k in dimension d on the mesh Th
is given by

V k,d
h (Th) =

{
v ∈ C0(Ω) : ∀T ∈ Th : v|T = µT ◦ pT ∧ pT ∈ Pk,dT

}
(4)

with the appropriate space of multivariate polynomials of degree k in dimension d
depending on the type of element T :

Pk,dT =



{
p : p(x1, . . . , xd) =

∑
0≤‖α‖1≤k

cαx
α1
1 · . . . · x

αd
d

}
T̂ = Ŝ (simplex),{

p : p(x1, . . . , xd) =
∑

0≤‖α‖∞≤k
cαx

α1
1 · . . . · x

αd
d

}
T̂ = Ĉ (cube).

(5)

Note that in dimension 1 there is no difference between cube and simplex. In
dimension 2 triangular and quadrilateral elements may be mixed. In dimension 3,
however, tetrahedral and hexahedral elements may not be mixed without introducing
additional elements such as prisms. The dimension of Pk,dT is

nk,d
Ĉ

= (k + 1)d

in the case of a cube reference element and

nk,d
Ŝ

=

{
1 k = 0 ∨ d = 0∑k

i=0 n
i,d−1

Ŝ
else

in the case of a simplex reference element.

Local Lagrange Basis

(4) defines the finite element space without reference to a basis. For the implemen-
tation in the computer a basis is needed. We now generalize the construction of the
Lagrange basis functions to the general space V k,d

h (Th). To that end, the reference
element T̂ is equipped with Lagrange points

LT̂ =

{
x̂T̂0 , . . . , x̂

T̂

nk,d

T̂
−1

}
5

and Lagrange polynomials

PT̂ =

{
pT̂0 , . . . , p

T̂

nk,d

T̂
−1

}
such that

pT̂i (x̂T̂j) = δi,j.

Global continuity is then ensured by carefully placing nk,d−c
T̂

of these points on each
subentity of codimension c in the reference element.

Global Lagrange Basis

The local-to-global map gT is extended to map indices of local basis functions to
indices of global basis functions of the finite element space. Let

gT : {0, . . . , nk,d
T̂
− 1} → I

(
V k,d
h (Th)

)
=
{

0, . . . , dimV k,d
h (Th)− 1

}
be this extension and

C(i) = {(T,m) ∈ Th × N : gT (m) = i}

its inversion. Then

i) C(i) is nonempty for all i ∈ I
(
V k,d
h (Th)

)
and

ii) for all (T,m), (T ′,m′) ∈ C(i) it holds µT (xT̂m) = µT ′(xT̂
′

m′).

The global Lagrange basis functions spanning V k,d
h (Th) are then defined by

φi(x) =

{
pT̂m(µ−1

T (x)) x ∈ T ∧ (T,m) ∈ C(i)
0 else

, i ∈ I
(
V k,d
h (Th)

)
.

Each global basis function φi corresponds to a Lagrange point xi from the ordered
set

X k,d
h =

{
xi ∈ Ω : xi = µT (x̂T̂m) ∧ (T,m) ∈ C(i)

}
.

Note that for degree k = 1 one has I
(
V 1,d
h (Th)

)
= Ih, i.e. one basis function is

associated with each vertex of the mesh.

3.3 Incorporation of Dirichlet Boundary Conditions

The standard way to handle Dirichlet boundary conditions in the conforming finite
element method is to incorporate them directly into the function space. To do that
define the indices of Lagrange points on the Dirichlet boundary

ID
(
V k,d
h (Th)

)
=
{
i ∈ I

(
V k,d
h (Th)

)
: xi ∈ X k,d

h ∧ xi ∈ ΓD

}
.

For the test space one defines the space of finite element functions that are zero
on the Dirichlet boundary:

V k,d
h,0 (Th) =

{
v ∈ V k,d

h (Th) : v(xi) = 0 ∀i ∈ ID
(
V k,d
h (Th)

)}
6

For the trial space set
uh,g =

∑
i∈ID(V k,d

h (Th))

g(xi)φi

with the Dirichlet boundary condition function g. In fact one may want to use

uh,g =
∑

i∈I(V k,d
h (Th))

ug(xi)φi with ug(xi) = g(xi) for all i ∈ ID
(
V k,d
h (Th)

)

which incorporates the Dirichlet boundary conditions on ΓD and provides an initial
guess for the nonlinear iterative solver in the interior of the domain. Then the trial
space is

Uk,d
h (Th) =

{
u ∈ V k,d

h (Th) : u = uh,g + w ∧ w ∈ V k,d
h,0 (Th)

}
.

Finally, the finite element problem in its precise form reads

Find u ∈ Uk,d
h (Th) s.t.: rNLP(u, v) = 0 ∀v ∈ V k,d

h,0 (Th). (6)

General Constraints

PDELab provides a more general approach to construct subspaces of finite element
spaces. Given a finite-dimensional space Uh = span {φj : j ∈ Jh = {1, . . . , n}} a
subspace Ũh is constructed by

i) selecting a subset of indices J̃h ⊂ Jh

ii) and setting Ũh = span
{
φ̃j : j ∈ J̃h

}
, where the new basis functions have the

form
φ̃j = φj +

∑
l∈Jh\J̃h

(B)j,lφl ∀j ∈ J̃h.

Thus, any subspace of Uh is characterized by C = (J̃h, B). This abstractions allows
to represent Dirichlet conditions (Jh \ J̃h are the indices of the Dirichlet nodes and
B = 0), hanging nodes (Jh \ J̃h are the indices of hanging nodes and B represents
the interpolation conditions) or even rigid body modes.

3.4 Element-wise Computations

We now turn to how the residual can be evaluated in practice. The residual form
(2) can be readily decomposed into elementwise contributions:

rNLP (u, v) =
∑
T∈Th

αVT (u, v) +
∑
T∈Th

λVT (v) +
∑

F∈F∂Ω
h

λBF (v)

with

αVT (u, v) =

∫
T

∇u · ∇v + q(u)v dx, λVT (v) = −
∫
T

fv dx, λBF (v) =

∫
F∩ΓN

jv ds.

7

Here F∂Ω
h is the set of intersections of elements with the domain boundary ∂Ω. The

element-wise computations can be classified on the one hand as volume integrals (su-
perscript V), boundary integrals (superscript B) and skeleton integrals (superscript
S, to be shown later) and on the other hand as integrals depending on trial and test
functions (α-terms) and integrals depending only on test functions (λ-terms). Here
we need three of these six possible combinations.

The three terms can now be evaluated using the techniques introduced in tutorial
00 with the small extension that for general maps µT we have

∇w(µT (x̂)) = J−1
µT

(x̂)∇̂ŵ(x̂)

with JµT (x̂) the Jacobian of µT at point x̂.

λ Volume Term

For any (T,m) ∈ C(i) we obtain

λVT (φi) = −
∫
T

fφi dx = −
∫
T̂

f(µT (x̂))pT̂m(x̂)|detJµT (x̂)| dx̂.

This integral on the reference element is then computed by employing numerical
integration of appropriate order. The evaluation for all test functions with support
on element T may be collected in a vector

(LVT)m = −
∫
T̂

f(µT (x̂))pT̂m(x̂)|detJµT (x̂)| dx̂.

λ Boundary Term

For F ∈ F∂Ω
h with F ∩ ΓN 6= ∅ and (T−F ,m) ∈ C(i) we obtain

λBT (φi) =

∫
F

jv ds =

∫
F̂

j(µF (s))pT̂m(ηF (s))
√
|det(JTµF (s)JµF (s))| ds

Because integration is over a face of codimension 1 now, two mappings are involved.
The map µF maps the reference element F̂ of F into global coordinates while the
map ηF maps F̂ into the reference element T̂ of T . Also the integration element has
to be redefined accordingly. Again, all contributions of the face F can be collected
in a vector:

(LBT)m =

∫
F̂

j(µF (s))pT̂m(ηF (s))
√
|detJTµT (s)JµT (s)| ds.

α Volume Term

For any (T,m) ∈ C(i) we get

αVT (uh, φi) =

∫
T

∇u · ∇φi + q(u)φi dx,=

∫
T

∑
j

(z)j (∇φj · ∇φi) + q

(∑
j

(z)jφj

)
φi dx,

=

∫
T̂

∑
n

(z)gT (n)(J
−1
µT

(x̂)∇̂pT̂n (x̂)) · (J−1
µT

(x̂)∇̂pT̂m(x̂))

+ q

(∑
n

(z)gT (n)p
T̂
n (x̂)

)
pT̂m(x̂)|detJµT (x̂)| dx̂

8

Again contributions for all test functions can be collected in a vector

(RV
T (RT z))m =

∑
n

(z)gT (n)

∫
T̂

(J−1
µT

(x̂)∇̂pT̂n (x̂)) · (J−1
µT

(x̂)∇̂pT̂m(x̂))|detJµT (x̂)| dx̂

+

∫
T̂

q

(∑
n

(z)gT (n)p
T̂
n (x̂)

)
pT̂m(x̂)|detJµT (x̂)| dx̂

Putting it all together

Now with these definitions in place the evaluation of the algebraic residual is

R(z) =
∑
T∈Th

RT
TRV

T (RT z) +
∑
T∈Th

RT
TLVT +

∑
F∈F∂Ω

h ∩ΓN

RT
TLBF (7)

The Jacobian of the residual is

(J(z))i,j =
∂Ri

∂zj
(z) =

∑
(T,m,n):(T,m)∈C(i)∧(T,n)∈C(j)

∂(RV
T)m

∂zn
(RT z)

Note that:

a) Entries of the Jacobian can be computed element by element.

b) The derivative is independent of the λ-terms as they only depend on the test
functions.

c) In the implementation below the Jacobian is computed numerically by finite
differences. This can be achieved automatically by deriving from an additional
base class.

4 Realization in PDELab
The structure of the code is very similar to that of tutorial 00. It consists of the
following files:

1) The ini-file tutorial01.ini holds parameters read by various parts of the code
which control the execution.

2) The main file tutorial01.cc includes the necessary C++, DUNE and PDELab
header files and contains the main function where the execution starts. The
purpose of the main function is to instantiate DUNE grid objects and call the
driver function.

3) File driver.hh instantiates the necessary PDELab classes for solving a nonlinear
stationary problem and finally solves the problem.

4) File nonlinearpoissonfem.hh contains the class NonlinearPoissonFEM realiz-
ing a PDELab local operator implementing the conforming finite element method
for arbitrary order and on arbitrary meshes.

9

5) File problem.hh contains a so-called parameter class which encapsulates the
user-definable part of the PDE problem such as right hand side and boundary
conditions.

6) Finally, the tutorial provides some mesh files.

4.1 Ini-File

The ini-file allows the user to set various parameters for the execution of the program.
Here we skim briefly through the sections.

[grid]
dim=2 # set to 1 | 2 | 3
manager=yasp # set to ug | alu | yasp
refinement =5 # be careful

The grid section allows to set the space dimension to 1, 2 or 3. In one dimension the
grid manager OneDGrid is used. In dimension 2 or 3 UGGrid or ALUGrid using sim-
plex grids or YaspGrid using cube grids can be selected. The refinement parameter
can be used to refine the initial coarse mesh the specified number of times.

[grid.oned]
a=0.0
b=1.0
elements =2

The grid.oned subsection is active when the dimension of the grid is set to one.
Then the domain is the interval from a to b and elements gives the number of
elements used to subdivide the interval.

[grid.structured]
LX=1.0
LY=1.0
LZ=1.0
NX=2
NY=2
NZ=2

The grid.structured subsection is active when yasp is selected as a grid manager
and allows to set the length of the domain in every direction (always starting at
zero) and the number of elements to be used per direction.

[grid.twod]
filename=unitsquare.msh

The grid.twod subsection is active when ug or alu are selected as grid managers
in two space dimensions. The gmsh-file with the given name is read as coarse grid.

[grid.threed]
filename=unitcube.msh

The grid.threed subsection is active when ug or alu are selected as grid managers
in three space dimensions. The gmsh-file with the given name is read as coarse grid.

10

[fem]
degree =1 # oned: 1..4, ug|alu: 1..3, yasp: 1..2

The fem section provides the parameters for the finite element method. The only
parameter in this tutorial is the polynomial degree for the finite element space. Note
that different degrees are possible depending on the grid manager used.
[problem]
eta =2.0

The problem section provides parameters for the specific problem to be solved. The
tutorial solves problem (1) with

q(u) = ηu2, f(x) = −2d, ΓD = ∂Ω, g(x) = ‖x‖2.

The parameter η in the nonlinear term is read from the ini-file.
The behavior of the newton solver is also controlled by the ini-file.

[newton]
reassemble_treshhold = 0.0 # always reassemble J
verbosity = 3 # be verbose
reduction = 1e-10 # total reduction
min_linear_reduction = 1e-4 # min. red. in linear solve

[newton.terminate]
max_iterations = 25 # limit number of iterations

[newton.line_search]
line_search_max_iterations = 10 # limit linea search iterations

The output section controls the output of the solution to a vtk-file using DUNE’s
SubsamplingVTKWriter. The user can give the name of the output file and specify
the number of subsampling intervals.
[output]
filename=eta2
subsampling =1

4.2 Function main

The main function in tutorial01.cc is very similar to the one in tutorial00.cc.
It starts by getting a reference to the Dune::MPIHelper singleton and opens and
reads in the ini-file. This is not repeated here.

Then there are several sections where Dune::Grid objects are instantiated and
the driver function is called. Since the grid manager, the space dimension and the
polynomial degree are template parameters of various classes but the user should be
able to select these during run-time in the ini-file all the different cases are selected
with if-statements within which the appropriate classes are instantiated. As an
example we just present the section for dimension 1 using OneDGrid here.

In one space dimension we start with reading the grid parameters from the ini-
file:

11

if (dim ==1)
{

// read grid parameters from input file
typedef Dune:: OneDGrid ::ctype DF;
DF a = ptree.get <DF >("grid.oned.a");
DF b = ptree.get <DF >("grid.oned.b");
unsigned int N = ptree.get <int >("grid.oned.elements");

Then we create a std::vector with an equidistant subdivision of the given
interval. Note that OneDGrid could handle arbitrary subdivisions.

// create equidistant intervals
std::vector <DF> intervals(N+1);
for(unsigned int i=0; i<N+1; ++i)

intervals[i] = a + DF(i)*(b-a)/DF(N);

Now an instance of OneDGrid can be created and refined uniformly:

// Construct grid
typedef Dune:: OneDGrid Grid;
Grid grid(intervals);
grid.globalRefine(refinement);

Finally, for polynomial degrees one through four a finite element map of the
appropriate order is created and the driver function is called. The driver function
gets a grid view, the finite element map and the parameter tree as parameters and
is covered in the next section:

// call generic driver function
typedef Dune:: OneDGrid :: LeafGridView GV;
GV gv=grid.leafGridView ();
if (degree ==1) {

typedef Dune:: PDELab ::
PkLocalFiniteElementMap <GV,DF,double ,1> FEM;

FEM fem(gv);
driver(gv,fem ,ptree);

}
if (degree ==2) {

typedef Dune:: PDELab ::
PkLocalFiniteElementMap <GV,DF,double ,2> FEM;

FEM fem(gv);
driver(gv,fem ,ptree);

}
if (degree ==3) {

typedef Dune:: PDELab ::
PkLocalFiniteElementMap <GV,DF,double ,3> FEM;

FEM fem(gv);
driver(gv,fem ,ptree);

}
if (degree ==4) {

typedef Dune:: PDELab ::

12

PkLocalFiniteElementMap <GV,DF,double ,4> FEM;
FEM fem(gv);
driver(gv,fem ,ptree);

}

4.3 Function driver

The function driver solves the problem on a given mesh with a particular finite
element method given by its local basis functions on the reference element. It has
the following interface:

template <typename GV, typename FEM >
void driver (const GV& gv, const FEM& fem ,

Dune:: ParameterTree& ptree)

The driver function is very similar to the one in tutorial 00. Therefore we
mainly focus on the differences. It starts by extracting the dimension of the grid
and some important types:

// dimension and important types
const int dim = GV:: dimension;
typedef double RF; // type for computations

An important difference to tutorial 00 is that all parameters of the PDE to be
solved are encapsulated in a separate class with a prescribed interface. This class
is then given to the local operator as a template parameter. This makes sense here
because problem (1) has five parameters: the functions q, f , g and j as well as
the partitioning of the domain boundary in Dirichlet and Neumann part. This is a
general pattern followed by many PDELab local operators.

The interface of the parameter class is defined by the implementor of the local
operator and is not part of PDELab. As shown in tutorial 00 it is perfectly possible
to have a local operator without a parameter class. The following code segment
instantiates the problem class which is called Problem here (it is explained in detail
below):

// make PDE parameter class
RF eta = ptree.get("problem.eta",(RF)1.0);
Problem <RF> problem(eta);

Now there are two places where information from the PDE is used in PDELab.
First of all we need to have an object that can be used to as an argument to
Dune::PDELab::interpolate to initialize a vector which represents the initial guess
and the Dirichlet boundary conditions. The class Problem defines a method which
we need to use to define a class with the interface of Dune::PDELab::GridFunction.
This is accomplished by the following code using C++-14 generic lambdas:

auto glambda = [&](const auto& e, const auto& x)
{return problem.g(e,x);};

auto g = Dune:: PDELab ::
makeGridFunctionFromCallable(gv,glambda);

13

Similarly, we need an object that can be passed to Dune::PDELab::constraints
to fill a constraints container which is used to build a subspace of a function space.
Again, the class Problem defines such a method which is extracted with a lambda
function:

auto blambda = [&](const auto& i, const auto& x)
{return problem.b(i,x);};

auto b = Dune:: PDELab ::
makeBoundaryConditionFromCallable(gv,blambda);

The next step is to define the grid function space. This is exactly the same code
as in tutorial 00 except that the finite element map is passed as an argument to the
driver function from outside:

// Make grid function space
typedef Dune:: PDELab :: ConformingDirichletConstraints CON;
typedef Dune:: PDELab ::ISTL:: VectorBackend <> VBE;
typedef Dune:: PDELab :: GridFunctionSpace <GV,FEM ,CON ,VBE > GFS;
GFS gfs(gv,fem);
gfs.name("Vh");

Now comes unchanged code to assemble the constraints, instantiate a coefficient
vector, making a discrete grid function that can be used for visualization and inter-
polating the initial guess and Dirichlet boundary conditions:

// Assemble constraints
typedef typename GFS:: template

ConstraintsContainer <RF >:: Type CC;
CC cc;
Dune:: PDELab :: constraints(b,gfs ,cc); // assemble constraints
std::cout << "constrained␣dofs=" << cc.size() << "␣of␣"

<< gfs.globalSize () << std::endl;

// A coefficient vector
using Z = Dune:: PDELab :: Backend ::Vector <GFS ,RF >;
Z z(gfs); // initial value

// Make a grid function out of it
typedef Dune:: PDELab :: DiscreteGridFunction <GFS ,Z> ZDGF;
ZDGF zdgf(gfs ,z);

// Fill the coefficient vector
Dune:: PDELab :: interpolate(g,gfs ,z);

The next step is to instantiate a local operator, called NonlinearPoissonFEM,
containing the implementation of the element-wise computations of the finite ele-
ment method. As explained above the local operator is parametrized by the class
Problem. In addition, also the finite element map is passed as a template parameter
for reasons that will become clear below:

// Make a local operator
typedef NonlinearPoissonFEM <Problem <RF>,FEM > LOP;

14

LOP lop(problem);

Now the grid function space, local operator, matrix backend and constraints
container are used to set up a grid operator facilitating the global residual assembly,
Jacobian assembly and matrix-free Jacobian application. The matrix backend is
initialized with a guess of the approximate number of nonzero matrix entries per
row.

// Make a global operator
typedef Dune:: PDELab ::ISTL:: BCRSMatrixBackend <> MBE;
int degree = ptree.get("fem.degree",(int)1);
MBE mbe((int)pow (1+2* degree ,dim));
typedef Dune:: PDELab :: GridOperator <

GFS ,GFS , /* ansatz and test space */
LOP , /* local operator */
MBE , /* matrix backend */
RF,RF,RF, /* domain , range , jacobian field type*/
CC,CC /* constraints for ansatz and test space */
> GO;

GO go(gfs ,cc,gfs ,cc,lop ,mbe);

In order to prepare for the solution process an appropriate linear solver needs to
be selected:

// Select a linear solver backend
typedef Dune:: PDELab :: ISTLBackend_SEQ_CG_AMG_SSOR <GO> LS;
LS ls(100 ,2);

Since the problem is nonlinear we use the implementation of Newton’s method in
PDELab. It provides the inexact Newton method in the sense that the iterative so-
lution of the linear subproblems is stopped early and uses line search as globalization
strategy:

// set up nonlinear solver
Dune:: PDELab :: NewtonMethod <GO,LS> newton(go,ls);
newton.setParameters(ptree.sub("newton"));

Now, finally do all the work and solve the problem:

// solve nonlinear problem
newton.apply(z);

At the end we can write the VTK file with subsampling:

// Write VTK output file
int subsampling = ptree.get("output.subsampling",(int)1);
Dune:: SubsamplingVTKWriter <GV> vtkwriter(

gv,
Dune:: refinementIntervals(subsampling)
);

typedef Dune:: PDELab :: VTKGridFunctionAdapter <ZDGF > VTKF;
vtkwriter.addVertexData(std::shared_ptr <VTKF >(new

VTKF(zdgf ,"fesol")));

15

vtkwriter.write(ptree.get("output.filename","output"),
Dune::VTK:: appendedraw);

4.4 The Problem Class

The class Problem contained in the file problem.hh provides all parameter functions
for the PDE problem. It is parameterized with the floating point type to be used:

template <typename Number >
class Problem

Its constructor takes a parameter η as argument:

//! Constructor takes eta parameter
Problem (const Number& eta_) : eta(eta_) {}

Now come the parameter functions defining the PDE problem. First is the nonlin-
earity q(u):

//! nonlinearity
Number q (Number u) const
{

return eta*u*u;
}

We also provide the derivative of the function q as a seperate method:

//! derivative of nonlinearity
Number qprime (Number u) const
{

return 2*eta*u;
}

This allows the implementation of an exact Jacobian later (illustrated in tutorial
02) and is actually not needed here as we will use a numerical Jacobian.

Next is the right hand side function f which gets an element e and a local
coordinate x within the corresponding reference element as a parameter:

//! right hand side
template <typename E, typename X>
Number f (const E& e, const X& x) const
{

return -2.0*x.size ();
}

The argument x can be expected to be an instance of Dune::FieldVector which
has a method size giving the number of components of the vector, i.e. the space
dimension.

The next method simply called b is the boundary condition type function. It
should return true if the position given by intersection i and a local coordinate x
within the reference element of the intersection is on the Dirichlet boundary. In the
particular instance here we set ΓD = ∂Ω:

16

//! boundary condition type function (true = Dirichlet)
template <typename I, typename X>
bool b (const I& i, const X& x) const
{

return true;
}

The value of the Dirichlet boundary condition is now defined by the method g.
As explained above in Section 3.3 it is more appropriate to provide a function ug
that can be evaluated on Ω and gives the value of g on the Dirichlet boundary and
the initial guess for the nonlinear solver on all other points:

//! Dirichlet extension
template <typename E, typename X>
Number g (const E& e, const X& x) const
{

auto global = e.geometry (). global(x);
Number s=0.0;
for (std:: size_t i=0; i<global.size (); i++) s+= global[i]* global[i];
return s;

}

As with the function f above the arguments are an element and a local coordinate
in its reference element. Here we evaluate it as ug(e, x) = ‖µe(x)‖2.

Finally, there is a method defining the value of the Neumann boundary condition.
Although there is no Neumann boundary here, the method has to be provided but
is never called. The arguments of the method are the same as for the boundary
condition type function b:

//! Neumann boundary condition
template <typename I, typename X>
Number j (const I& i, const X& x) const
{

return 0.0;
}

4.5 Local Operator NonlinearPoissonFEM

The class NonlinearPoissonFEM implements the element-wise computations of the
finite element method introduced in Section 3.4 above. Evaluation of the residual
R(z) is accomplished by the three types of contributions shown in equation (7). In
order to make things as simple as possible we chose to implement the evaluation of
the Jacobian and the matrix-free Jacobian application with finite differences.

The definition of class NonlinearPoissonFEM starts as follows:

template <typename Param , typename FEM >
class NonlinearPoissonFEM :

public Dune:: PDELab ::
NumericalJacobianVolume <NonlinearPoissonFEM <Param ,FEM > >,

public Dune:: PDELab ::

17

NumericalJacobianApplyVolume <NonlinearPoissonFEM <Param ,FEM > >,
public Dune:: PDELab :: FullVolumePattern ,
public Dune:: PDELab :: LocalOperatorDefaultFlags

The class is parametrized by a parameter class and a finite element map. Implemen-
tation of element-wise contributions to the Jacobian and matrix-free Jacobian eval-
uation is achieved through inheriting from the classes NumericalJacobianVolume
and NumericalJacobianApplyVolume. Using the curiously recurring template pat-
tern these classes provide the corresponding methods without any additional coding
effort based on the alpha_volume method explained below. The other two base
classes are the same as in tutorial 00.

The private data members are a cache for evaluation of the basis functions on
the reference element:

typedef typename FEM:: Traits :: FiniteElementType ::
Traits :: LocalBasisType LocalBasis;

Dune:: PDELab :: LocalBasisCache <LocalBasis > cache;

a reference to the parameter object:

Param& param; // parameter functions

and an integer value controlling the order of the formulas used for numerical quadra-
ture:

int incrementorder; // increase of integration order

The public part of the class starts with the definition of the flags controlling
the generic assembly process. The doPatternVolume flag specifies that the sparsity
pattern of the Jacobian is determined by couplings between degrees of freedom
associated with single elements. The corresponding default pattern assembly method
is inherited from the class FullVolumePattern:

// pattern assembly flags
enum { doPatternVolume = true };

The residual assembly flags indicate that in this local operator we will provide
the methods lambda_volume, lambda_boundary and alpha_volume:

// residual assembly flags
enum { doLambdaVolume = true };
enum { doLambdaBoundary = true };
enum { doAlphaVolume = true };

Next comes the constructor taking as an argument a reference to a parameter
object and the optional increment of the quadrature order:

//! constructor stores a copy of the parameter object
NonlinearPoissonFEM (Param& param_ , int incrementorder_ =0)

: param(param_), incrementorder(incrementorder_)
{}

18

Method lambda_volume

This method was also present in the local operator PoissonP1 in tutorial 00. It
implements the term LVT and has the interface:

//! right hand side integral
template <typename EG, typename LFSV , typename R>
void lambda_volume (const EG& eg, const LFSV& lfsv ,

R& r) const

The implementation here uses numerical quadrature of sufficiently high order
which is selected at the beginning of the method:

// select quadrature rule
auto geo = eg.geometry ();
const int order = incrementorder+

2*lfsv.finiteElement (). localBasis (). order ();
auto rule = Dune:: PDELab :: quadratureRule(geo ,order);

The DUNE quadrature rules provide a container of quadrature points that can
be iterated over:

// loop over quadrature points
for (const auto& ip : rule)

{
// evaluate basis functions
auto& phihat = cache.evaluateFunction(ip.position(),

lfsv.finiteElement (). localBasis ());

// integrate -f*phi_i
decltype(ip.weight ()) factor = ip.weight ()*

geo.integrationElement(ip.position ());
auto f=param.f(eg.entity(),ip.position ());
for (size_t i=0; i<lfsv.size (); i++)

r.accumulate(lfsv ,i,-f*phihat[i]* factor);
}

At each quadrature point all basis functions are evaluated. The local function space
argument lfsv provides all the basis functions on the reference element. Evaluations
are cached for each point as the evaluation may be quite costly, especially for high
order. In addition, copying of data is avoided as the cache returns only a reference to
the data stored in the cache. The integration factor is the product of the weight of
the quadrature point and the value of |detJµT (x̂)|. The implementation works also
for non-affine element transformation. The quadrature order should be increased
by providing a value for incrementorder in the constructor. Then the parameter
function can be evaluated and finally the residual contributions for each test function
are stored in the result object r.

Method lambda_boundary

The lambda_boundary implements the residual contributions due to Neumann bound-
ary conditions. It implements the term LBT and has the following interface:

19

// Neumann boundary integral
template <typename IG, typename LFSV , typename R>
void lambda_boundary (const IG& ig, const LFSV& lfsv ,

R& r) const

The difference to lambda_volume is that now an intersection is provided as first
argument.

The method begins by evaluating the type of the boundary condition at the
midpoint of the edge:

// evaluate boundary condition type
auto localgeo = ig.geometryInInside ();
auto facecenterlocal =

referenceElement(localgeo). position (0,0);
bool isdirichlet=param.b(ig.intersection (), facecenterlocal);

To that end the center of the reference element of the intersection is computed in
the variable facecenterlocal before the parameter function can be called.

If the boundary condition type evaluated at the face center is Dirichlet then the
complete face is assumed to be part of the Dirichlet boundary:

// skip rest if we are on Dirichlet boundary
if (isdirichlet) return;

It is thus assumed that the mesh resolves all positions where the boundary type
changes.

Now that we are on a Neumann boundary an appropriate quadrature rule is
selected for integration:

// select quadrature rule
auto globalgeo = ig.geometry ();
const int order = incrementorder+

2*lfsv.finiteElement (). localBasis (). order ();
auto rule = Dune:: PDELab :: quadratureRule(globalgeo ,order);

And here is the integral over the face:

// loop over quadrature points and integrate normal flux
for (const auto& ip : rule)

{
// quadrature point in local coordinates of element
auto local = localgeo.global(ip.position ());

// evaluate shape functions (assume Galerkin method)
auto& phihat = cache.evaluateFunction(local ,

lfsv.finiteElement (). localBasis ());

// integrate j
decltype(ip.weight ()) factor = ip.weight ()*

globalgeo.integrationElement(ip.position ());
auto j = param.j(ig.intersection (),ip.position ());
for (size_t i=0; i<lfsv.size (); i++)

20

r.accumulate(lfsv ,i,j*phihat[i]* factor);
}

Every quadrature point on the face needs to be mapped to the reference of the
volume element for evaluation of the basis functions. The evaluation uses the basis
function cache. Then the integration factor is computed and the contributions for
all the test functions are accumulated.

Method alpha_volume

This method was already present in tutorial 00. It implements the term RV
T (RT z)

and its interface is

//! volume integral depending on test and ansatz functions
template <typename EG, typename LFSU , typename X,

typename LFSV , typename R>
void alpha_volume (const EG& eg, const LFSU& lfsu , const X& x,

const LFSV& lfsv , R& r) const

The method starts by extracting the space dimension and the floating point type
to be used for computations:

// types & dimension
const int dim = EG:: Entity :: dimension;
typedef decltype(Dune:: PDELab ::

makeZeroBasisFieldValue(lfsu)) RF;

Then a quadrature rule is selected

// select quadrature rule
auto geo = eg.geometry ();
const int order = incrementorder+

2*lfsu.finiteElement (). localBasis (). order ();
auto rule = Dune:: PDELab :: quadratureRule(geo ,order);

and the quadrature loop is started

// loop over quadrature points
for (const auto& ip : rule)

{

Within the quadrature loop the basis functions are evaluated

// evaluate basis functions
auto& phihat = cache.evaluateFunction(ip.position(),

lfsu.finiteElement (). localBasis ());

and the value of uh at the quadrature point is computed.

// evaluate u
RF u=0.0;
for (size_t i=0; i<lfsu.size (); i++)

u += x(lfsu ,i)* phihat[i];

21

Then the gradients of the basis functions on the reference element are evaluated via
the evaluation cache:

// evaluate gradient of shape functions
auto& gradphihat = cache.evaluateJacobian(ip.position(),

lfsu.finiteElement (). localBasis ());

Now the gradients need to be transformed from the reference element to the trans-
formed element by multiplication with J−1

µT
(x̂):

// transform gradients of shape functions to real element
const auto S = geo.jacobianInverseTransposed(ip.position ());
auto gradphi = makeJacobianContainer(lfsu);
for (size_t i=0; i<lfsu.size (); i++)

S.mv(gradphihat[i][0], gradphi[i][0]);

Note that, as explained in tutorial 00, DUNE allows basis functions in general to be
vector valued. Therefore gradphi[i][0] contains the gradient (with d components)
of the component 0 of basis function number i.

Now ∇uh can be computed
// compute gradient of u
Dune:: FieldVector <RF,dim > gradu (0.0);
for (size_t i=0; i<lfsu.size (); i++)

gradu.axpy(x(lfsu ,i),gradphi[i][0]);

and we are in the position to finally compute the residual contributions:
// integrate (grad u)*grad phi_i + q(u)*phi_i
auto factor = ip.weight ()*

geo.integrationElement(ip.position ());
auto q = param.q(u);
for (size_t i=0; i<lfsu.size (); i++)

r.accumulate(lfsu ,i,(gradu*gradphi[i][0]+
q*phihat[i])* factor);

4.6 Running the Example

Running tutorial 01 by typing
./ tutorial01

yields an output similar to the following:
Parallel code run on 1 process(es)
constrained dofs =128 of 1089

Initial defect: 5.2962e-02
Newton iteration 1. New defect: 1.2256e-04. Reduction (this): 2.3142e-03. Reduction (total): 2.3142e-03
Newton iteration 2. New defect: 2.2284e-09. Reduction (this): 1.8182e-05. Reduction (total): 4.2076e-08
Newton iteration 3. New defect: 5.4824e-15. Reduction (this): 2.4602e-06. Reduction (total): 1.0351e-13

The program reports the number of constrained degrees of freedom (i.e. Lagrange
points on the Dirichlet boundary) as well as the total number of degrees of freedom.
Then the initial nonlinear residual and the reduction within each Newton iteration
is reported.

An illustration of the influence of the nonlinearity q on the solution is given in
Figure 1.

22

Figure 1: Illustration of the influence of the parameter η in nonlinearity on the
solution. η = 0 (left), η = 10 (middle), η = 100 (right).

5 Outlook
Here are some suggestions how to test and modify this example:

• Play with other nonlinearities, e.g. q(u) = exp(ηu).

• Compare cost and accuracy of different polynomial degrees and simplicial
meshes vs. cube meshes.

• Implement Nitsche’s method to incorporate Dirichlet boundary conditions in
a weak sense. This method is based on the following residual form:

rNitsche(u, v) =

∫
Ω

∇u · ∇v + (q(u)− f)v dx+

∫
ΓN

jv ds

−
∫

ΓD

∇u · νv ds−
∫

ΓD

(u− g)∇v · ν ds+ η

∫
ΓD

(u− g)v ds

and requires an additional method alpha_boundary with the following inter-
face:

template <typename IG, typename LFSU , typename X,
typename LFSV , typename R>

void alpha_boundary (const IG& ig,
const LFSU& lfsu_s , const X& x_s ,
const LFSV& lfsv_s , R& r_s) const

• Implement the streamline diffusion method for a convection term, see [4] for
details.

References
[1] D. Braess. Finite Elemente. Springer, 3rd edition, 2003.

[2] S. C. Brenner and L. R. Scott. The mathematical theory of finite element meth-
ods. Springer, 1994.

23

[3] P. G. Ciarlet. The finite element method for elliptic problems. Classics in Applied
Mathematics. SIAM, 2002.

[4] H. Elman, D. Silvester, and A. Wathen. Finite Elements and Fast Iterative
Solvers. Oxford University Press, 2005.

[5] K. Eriksson, D. Estep, P. Hansbo, and C. Johnson. Computational Differential
Equations. Cambridge University Press, 1996. http://www.csc.kth.se/~jjan/
private/cde.pdf.

[6] A. Ern and J.-L. Guermond. Theory and practice of finite element methods.
Springer, 2004.

[7] W. Hackbusch. Theorie und Numerik elliptischer Differentialgleichungen. Teub-
ner, 1986. http://www.mis.mpg.de/preprints/ln/lecturenote-2805.pdf.

24

http://www.csc.kth.se/~jjan/private/cde.pdf
http://www.csc.kth.se/~jjan/private/cde.pdf
http://www.mis.mpg.de/preprints/ln/lecturenote-2805.pdf

	Introduction
	Problem Formulation
	Finite Element Method
	Algebraic Problem
	Finite Element Space
	Incorporation of Dirichlet Boundary Conditions
	Element-wise Computations

	Realization in PDELab
	Ini-File
	Function main
	Function driver
	The Problem Class
	Local Operator NonlinearPoissonFEM
	Running the Example

	Outlook

