
DUNE PDELab Tutorial 04
Finite Elements for the Wave Equation

DUNE/PDELab Team

February 5, 2021

Contents
1 Introduction 2

2 PDE Problem 2

3 Finite Element Method 4

4 Realization in PDELab 4
4.1 Ini-File . 4
4.2 Function main . 5
4.3 Function driver . 5
4.4 Spatial Local Operator . 7
4.5 Temporal Local Operator . 9
4.6 Running the Example . 10

5 Outlook 10

1

1 Introduction
In this tutorial we solve the wave equation formulated as a first order in time system.
This way the example serves as a model for the treatment of systems of partial
differential equations in PDELab.

Depends On

This tutorial depends on tutorial 01 and 03.

2 PDE Problem
As an example for a system we consider the wave equation with reflective boundary
conditions:

∂ttu− c2∆u = 0 in Ω× Σ, (1a)
u = 0 on ∂Ω, (1b)
u = q at t = 0, (1c)

∂tu = w at t = 0, (1d)

where c is the speed of sound. Renaming u0 = u and introducing u1 = ∂tu0 = ∂tu
we can write the wave equation as a system of two equations:

∂tu1 − c2∆u0 = 0 in Ω× Σ, (2a)
∂tu0 − u1 = 0 in Ω× Σ, (2b)

u0 = 0 on ∂Ω, (2c)
u1 = 0 on ∂Ω, (2d)
u0 = q at t = 0, (2e)
u1 = w at t = 0. (2f)

Since u0 = u = 0 on the boundary we also have ∂tu = u1 = 0 on the boundary. But
one may also omit the boundary condition on u1.

Note that there are several alternative ways how to write the scalar equation (1)
as a system of PDEs:

• Eriksson et al. in [1] apply the Laplacian to equation (2b)

∆∂tu0 −∆u1 = 0 (3)

which has advantages for energy conservation but requires additional smooth-
ness properties.

• Alternatively, we may introduce the abbreviations q = ∂tu and w = −∇u, so
∂ttu− c2∆u = ∂ttu− c2∇ ·∇u = ∂tq + c2∇ ·w = 0. Taking partial derivatives
of the introduced variables we obtain ∂xi

q = ∂xi
∂tu = ∂t∂xi

u = −∂twi. This
results in a first-order hyperbolic system of PDEs for q and w

∂tq + c2∇ · w = 0

∂tw +∇q = 0

2

which are called equations of linear acoustics [2]. This formulation is physically
more relevant. It can be modified to handle discontinuous material properties
and upwind finite volume methods can be used for numerical treatment.

Here we will stay, however, with the simplest formulation (2) for simplicity.

Weak Formulation

Multiplying (2a) with the test function v0 and (2b) with the test function v1 and
using integration by parts we arrive at the weak formulation: Find (u0(t), u1(t)) ∈
U0 × U1 s.t.

dt(u1, v0)0,Ω + c2(∇u0,∇v0)0,Ω = 0 ∀v0 ∈ U0

dt(u0, v1)0,Ω − (u1, v1)0,Ω = 0 ∀v1 ∈ U1 (4)

where we used the notation of the L2 inner product (u, v)0,Ω =
∫

Ω
uv dx. An equiv-

alent formulation to (4) that hides the system structure reads as follows:

dt [(u0, v1)0,Ω + (u1, v0)0,Ω]

+
[
c2(∇u0,∇v0)0,Ω − (u1, v1)0,Ω

]
= 0 ∀(v0, v1) ∈ U0 × U1

(5)

With the latter we readily identify the temporal and spatial residual forms:

mWAVE((u0, u1), (v0, v1)) = (u0, v1)0,Ω + (u1, v0)0,Ω, (6)
rWAVE((u0, u1), (v0, v1)) = c2(∇u0,∇v0)0,Ω − (u1, v1)0,Ω , (7)

while with the former the system structure is more visible which might help to
understand the implementation presented in section 4.3. The spaces U0 and U1 can
differ as different types of boundary conditions can be incorporated into the ansatz
spaces. But here both spaces are constrained by homogeneous Dirichlet boundary
conditions.

Generalization

The abstract setting of PDELab with its weighted residual formulation carries over
to the case of systems of partial differential equations when cartesian products of
functions spaces are introduced, i.e. the abstract stationary problem then reads

Find uh ∈ Uh = U1
h × . . .× U s

h s.t.: rh(uh, v) = 0 ∀v ∈ Vh = V 1
h × . . .× V s

h (8)

with s the number of components in the system. Again the concepts are completely
orthogonal meaning that rh might be affine linear or nonlinear in its first argument
and the instationary case works as well.

From an organizational point of view it makes sense to allow that a component
space U i

h in the cartesian product is itself a product space. This naturally leads to
a tree structure in the function spaces.

Consider as an example the Stokes equation in d space dimensions. There one has
pressure p and velocity v with components v1, . . . , vd as unknowns. An appropriate
function space then would be

U = (P, (V 1, . . . , V d)).

3

3 Finite Element Method
The finite element method applied to (5) is straightforward. We may use the con-
forming space V k,d

h (Th) of degree k in dimension d for each of the components.
Typically one would choose the same polynomial degree for both components.

4 Realization in PDELab
The structure of the code is very similar to that of tutorial 01 and 03. It consists of
the following files:

1) The ini-file tutorial04.ini holds parameters read by various parts of the code
which control the execution.

2) The main file tutorial04.cc includes the necessary C++, DUNE and PDELab
header files and contains the main function where the execution starts. The
purpose of the main function is to instantiate DUNE grid objects and call the
driver function.

3) File driver.hh instantiates the necessary PDELab classes for solving a linear
instationary problem and finally solves the problem.

4) File wavefem.hh contains the local operator classes WaveFEM and WaveL2 realizing
the spatial and temporal residual forms.

4.1 Ini-File

The ini-file contains the usual sections for structured and 1d grids. The fem section
is the same as in tutorial 01 and allows to set the polynomial degree, temporal
integration order and the time step size. The problem section has a new parameter
for the speed of sound.

[grid]
dim=2
refinement =4

[grid.structured]
LX=2.5
LY=1.0
LZ=1.0
NX=5
NY=2
NZ=2

[grid.oned]
a=0.0
b=2.5
elements =5

[fem]

4

degree =2
torder =2
dt =0.025

[problem]
speedofsound =1.0
T=4.0

[output]
filename=wave2d
subsampling =2

4.2 Function main

The main function is very similar to the one in tutorial 03. In order to simplify
things only the structured grids OneDGrid and YaspGrid are used.

4.3 Function driver

The driver function gets a grid view, a finite element map and a parameter tree
and its purpose is to solve the problem on the given mesh.

template <typename GV, typename FEM >
void driver (const GV& gv, const FEM& fem ,

Dune:: ParameterTree& ptree)

There are several changes now in the driver due to the system of PDEs. The
first step is to set up the grid function space using the given finite element map:

using CON = Dune:: PDELab :: ConformingDirichletConstraints;
using VBE0 = Dune:: PDELab ::ISTL:: VectorBackend <>;
using GFS0 = Dune:: PDELab :: GridFunctionSpace <GV ,FEM ,CON ,VBE0 >;
GFS0 gfs0(gv,fem);

The next step is to set up the product space containing two components. This
is done by the following code section:

using VBE =
Dune:: PDELab ::ISTL:: VectorBackend <

Dune:: PDELab ::ISTL:: Blocking ::fixed
>;

using OrderingTag = Dune:: PDELab :: EntityBlockedOrderingTag;
using GFS =

Dune:: PDELab :: PowerGridFunctionSpace <GFS0 ,2,VBE ,OrderingTag >;
GFS gfs(gfs0);

PDELab offers two different class templates to build product spaces. The one used
here is PowerGridFunctionSpace which creates a product of a compile-time given
number (2 here) of identical function spaces (GFS0 here) which may only differ in
the constraints. With the class template CompositeGridFunctionSpace you can
create a product space where all components might be different spaces.

5

We also have to set up names for the child spaces to facilitate VTK output later
on:

using namespace Dune:: Indices;
gfs.child(_0).name("u0");
gfs.child(_1).name("u1");

An important aspect of product spaces is the ordering of the corresponding
degrees of freedom. Often the solvers need to exploit an underlying block structure
of the matrices.

This works in two stages: An ordering has first to be specified when creating
product spaces which is then subsequently exploited in the backend. Here we use
the EntityBlockedOrderingTag to specify that all degrees of freedom related to a
geometric entity should be numbered consecutively in the coefficient vector. Other
options are the LexicographicOrderingTag ordering first all degrees of freedom of
the first component space, then all of the second component space and so on. With
the Iterative Solver Template Library ISTL it is now possible to exploit the block
structure at compile-time. Here we use the tag fixed in the ISTL vector backend
to indicate that at this level we want to create blocks of fixed size (in this case the
block size will be two – corresponding to the degrees of freedom per entity). Another
option would be the tag none which is the default. Then the degrees of freedom are
still ordered in the specified way but no block structure is introduced on the ISTL
level. Important notice: Using fixed block structure in ISTL requires that there
is the same number of degrees of freedom per entity. This is true for polynomial
degrees one and two but not for higher polynomial degree!

In order to define a function that specifies the initial value we can use the same
techniques as in the scalar case. We first define a lambda closure

// define the initial condition
auto ulambda = [dim](const auto& x){

Dune:: FieldVector <RF ,2> rv (0.0);
for (int i=0; i<dim; i++) rv [0]+=(x[i] -0.375)*(x[i] -0.375);
rv[0] = std::max (0.0 ,1.0 -8.0* sqrt(rv [0]));
return rv;

};

now returning two components in a FieldVector. The first component is the initial
value for u and the second component is the initial value for ∂tu. Then a PDELab
grid function can be constructed from the lambda closure

auto u = Dune:: PDELab :: makeGridFunctionFromCallable(gv,ulambda);

Using the grid function a coefficient vector can now be initialized:

using Z = Dune:: PDELab :: Backend ::Vector <GFS ,RF >;
Z z(gfs);
Dune:: PDELab :: interpolate(u,gfs ,z);

The next step is to assemble the constraints container for the composite func-
tion space. Unfortunately there is currently no way to define the constraints for
both components in one go. We need to set up a separate lambda closure for each
component:

6

auto b0lambda = [](const auto& x){ return true ;};
auto b0 = Dune:: PDELab ::

makeBoundaryConditionFromCallable(gv,b0lambda);
auto b1lambda = [](const auto& x){ return true ;};
auto b1 = Dune:: PDELab ::

makeBoundaryConditionFromCallable(gv,b1lambda);

and then combine it using:

using B = Dune:: PDELab :: CompositeConstraintsParameters <
decltype(b0),decltype(b1)
>;

B b(b0,b1);

Note that you could define different constraints for each component space although
it is the same underlying function space.

Now the constraints container can be assembled as before:

using CC = typename GFS:: template ConstraintsContainer <RF >:: Type;
CC cc;
Dune:: PDELab :: constraints(b,gfs ,cc);

As we do not want to manually extract the subspaces for u0 and u1 from the
overall space to add to them to the VTK writer, we call a PDELab helper function
that handles this automatically:

Dune:: PDELab :: addSolutionToVTKWriter(vtkSequenceWriter ,gfs ,z);

Note that in order to use this function, we have to set the names of the subspaces,
as we did earlier in the tutorial.

The rest of the driver is the same as for tutorial 03 except that a linear solver is
used instead of Newton’s method.

4.4 Spatial Local Operator

The spatial residual form (7) is implemented by the local operator WaveFEM in file
wavefem.hh. Cache construction and flags settings are the same as in tutorial 01
and 03. Only volume terms are used here. Note also that no parameter object is
necessary as the only parameter is the speed of sound c.

alpha_volume method

The method alpha_volume has the same interface as in the scalar case:

template <typename EG, typename LFSU , typename X,
typename LFSV , typename R>

void alpha_volume (const EG& eg, const LFSU& lfsu , const X& x,
const LFSV& lfsv , R& r) const

However the trial and test function spaces LFSU and LFSV now reflect the component
structure of the global function space, i.e. they consist of two components.

7

Important notice: Here we assume that trial and test space are identical (up to
constraints) and that also both components are identical!

The two components can be extracted with the following code

using namespace Dune:: Indices;
auto lfsu0 = lfsu.child(_0);
auto lfsu1 = lfsu.child(_1);

The function spaces lfsu0 and lfsu1 are now scalar spaces (which we assume to
be identical).

After extracting the dimension

const int dim = EG:: Entity :: dimension;

we select a quadrature rule

auto geo = eg.geometry ();
int order = 2*lfsu0.finiteElement (). localBasis (). order ();
auto rule = Dune:: PDELab :: quadratureRule(geo ,order);

and may now loop over the quadrature points.
For each quadrature point, evaluate the basis function of the first component:

auto& phihat = cache.evaluateFunction(ip.position(),
lfsu0.finiteElement (). localBasis ());

As the components are identical we need only evaluate the basis once and can
compute the value of u1 at the quadrature point

RF u1=0.0;
for (size_t i=0; i<lfsu1.size (); i++)

u1 += x(lfsu1 ,i)* phihat[i];

Then we evaluate the gradients of the basis functions

auto& gradphihat = cache.evaluateJacobian(ip.position(),
lfsu0.finiteElement (). localBasis ());

transform them from the reference element to the real element

const auto S =
geo.jacobianInverseTransposed(ip.position ());

auto gradphi = makeJacobianContainer(lfsu0);
for (std:: size_t i=0; i<lfsu0.size (); i++)

S.mv(gradphihat[i][0], gradphi[i][0]);

and compute the gradient of u0:

Dune:: FieldVector <RF,dim > gradu0 (0.0);
for (std:: size_t i=0; i<lfsu0.size (); i++)

gradu0.axpy(x(lfsu0 ,i),gradphi[i][0]);

With the integration factor

RF factor = ip.weight ()*
geo.integrationElement(ip.position ());

8

the residuals can now be accumulated:

for (std:: size_t i=0; i<lfsu0.size (); i++) {
r.accumulate(lfsu0 ,i,c*c*(gradu0*gradphi[i][0])* factor);
r.accumulate(lfsu1 ,i,-u1*phihat[i]* factor);

}

jacobian_volume method

As the problem is linear it is advisable to also implement the jacobian_volume
method for efficiency and accuracy.

The interface is the same as in the scalar case:

template <typename EG, typename LFSU , typename X,
typename LFSV , typename M>

void jacobian_volume (const EG& eg, const LFSU& lfsu , const X& x,
const LFSV& lfsv , M& mat) const

Component selection, quadrature rule selection and basis evaluation are the same
as in alpha_volume. We only consider the accumulation of the Jacobian entries here:

RF factor = ip.weight ()*
geo.integrationElement(ip.position ());

for (std:: size_t j=0; j<lfsu0.size (); j++)
for (std:: size_t i=0; i<lfsu0.size (); i++) {

mat.accumulate(lfsu0 ,i,lfsu0 ,j,
c*c*(gradphi[j][0]* gradphi[i][0])* factor);

mat.accumulate(lfsu1 ,i,lfsu1 ,j,
-phihat[j]* phihat[i]* factor);

}

Note how the diagonal sub-blocks of the Jacobian with respect to the first and second
component are accessed.

Finally, WaveFEM also implements the matrix-free versions for Jacobian applica-
tion.

4.5 Temporal Local Operator

The temporal residual form (6) is implemented by the local operator WaveL2 in file
wavefem.hh. Cache construction and flags settings are the same as in tutorial 01
and 03. Only volume terms are used here.

alpha_volume method

The alpha_volumemethod is pretty similar to the one in the spatial operator, except
that the value of u0 is needed instead of the gradient.

Here we just show the residual accumulation:

RF factor=ip.weight ()*geo.integrationElement(ip.position ());
for (std:: size_t i=0; i<lfsu0.size (); i++) {

r.accumulate(lfsu0 ,i,u1*phihat[i]* factor);

9

Figure 1: Solution of the wave equation at four different times. Time is proceeding
left to right, top to bottom.

r.accumulate(lfsu1 ,i,u0*phihat[i]* factor);
}

Note that u1 is integrated with respect to test function v0 and vice versa.

jacobian_volume method

The corresponding Jacobian entries are accumulated in the jacobian_volumemethod:

// accumulate matrix entries
RF factor=ip.weight ()*geo.integrationElement(ip.position ());
for (std:: size_t j=0; j<lfsu0.size (); j++)

for (std:: size_t i=0; i<lfsu0.size (); i++) {
mat.accumulate(lfsu0 ,i,lfsu1 ,j,

phihat[j]* phihat[i]* factor);
mat.accumulate(lfsu1 ,i,lfsu0 ,j,

phihat[j]* phihat[i]* factor);

That’s it! 293 lines of code to implement the finite element method for the wave
equation.

4.6 Running the Example

The example solves the wave equation in the domain Ω = (0, 2.5)× (0, 1)d−1 with a
bump-like initial condition. The results for the two-dimensional case are illustrated
in Figure 1. The initial bump has a height of 1 while the color code corresponds to
blue for −0.5 and red for 0.5.

5 Outlook
The following ideas could be explored from this tutorial:

10

• Explore polynomial degree greater than 2 by changing the blocking to none.

• Compute the total energy E(t) = ‖∂tu‖2
0,Ω+‖∇u‖2

0,Ω and check its conservation
in the numerical scheme.

• Try various time integrators, in particular the Crank-Nicolson method.

• Implement the elliptic projection method of [1] from equation (2).

References
[1] K. Eriksson, D. Estep, P. Hansbo, and C. Johnson. Computational Differential

Equations. Cambridge University Press, 1996. http://www.csc.kth.se/~jjan/
transfer/cde.pdf.

[2] R. J. Leveque. Finite Volume Methods for Hyperbolic Problems. Cambridge
University Press, 2002.

11

http://www.csc.kth.se/~jjan/transfer/cde.pdf
http://www.csc.kth.se/~jjan/transfer/cde.pdf

	Introduction
	PDE Problem
	Finite Element Method
	Realization in PDELab
	Ini-File
	Function main
	Function driver
	Spatial Local Operator
	Temporal Local Operator
	Running the Example

	Outlook

