Speaker:

Olaf Ippisch
Institut fiir Mathematik
TU Clausthal

Goals of this introduction

A number of advanced C++ features is required to use DUNE or makes its usage
much easier. Some of them were introduced in the last C++ language-standards
C++11, C++14 and C4++17. We will specifically look at:

| 2

vVvvyVvVvVvVvyyy

Compiling Programs on Linux-based systems
Object-Oriented Programming

Namespaces

Automatic type deduction

Templates

Containers of the C4++ standard library
Range-based for loops

Lambda functions

Compiling Programs

On Linux-based systems, the (GNU-)C++ compiler is called g++. In order to compile a
program from the source file main.cc and create an executable called myprogram you
run it like this:

g++ -o myprogram main.cc

With g++ the C++-14 standard is the default since version 6.1. If you want to use
C++17 or if you use the Intel compiler or clang, you can set the standard with the
option -std=c++14 or -std=c++17 (on Windows systems the options may be
different), e.g.

g++ -std=c++17 -o myprogram main.cc
If your program was compiled successfully (without error messages), you run it with:

./myprogram

and get for example the output
Hello, world!

Compiling Programs

For more complex software projects usually so-called makefiles are provided. A makefile
ensures that all relevant source files for the project are compiled, when the command
make is executed:

make

If you build the project after changing only some source files, only these files are
recompiled, which can speed up the process considerably.
For DUNE the makefiles are generated by a tool called cmake.

Object-Oriented Programming

The basic idea of object-oriented programming is to define components with a certain
functionality. These components combine both the methods which are needed to
provide and control the functionality as well as the relevant data. Different
components are connected via interfaces. The same interface is used for specialised
components providing the same general functionality.

This approach has several advantages:

» Different components can be developed separately.

» If improved versions of a component become available, they can be used without
major changes to the program code.

> Several realisations of the same component can be used easily.

This is also used in the real world, e.g. the tires of a car, the socket of a CPU, the
USB interface of computers, printers, mobile phones ...

Object-oriented Programming in C++

In C++ this idea is realised by classes and objects. Classes describe the functionality
and structure of a component. Realisations of this blueprint are called objects.
Let us use a two-dimensional vector as example:

» The vector consists of two components.

» The necessary operations are length (norm), sum of two vectors, multiplication of
a vector with a scalar,. . ..

> Initialization: Create a vector with a defined state.

(1,3) and (5,0) are different vectors, but they share the same structure.

Object-oriented Programming in C++

In C++ this idea is realised by classes and objects. Classes describe the functionality
and structure of a component. Realisations of this blueprint are called objects.
Let us use a two-dimensional vector as example:

» The vector consists of two components.

» The necessary operations are length (norm), sum of two vectors, multiplication of
a vector with a scalar,. . ..

> Initialization: Create a vector with a defined state.
(1,3) and (5,0) are different vectors, but they share the same structure.

= C++ language concept

class describes semantics of similar objects (vectors, function spaces, linear
solvers,. ..).

Classes

class Point2D {
public:
Point2D (double x_, double y_)
x(x_), y(y_.)
{}

double norm() const {
return sqrt(x*x + y*y);

}

void add(const Point2D& p) {
X += pP-X;
y *= pP.y;

}

private:
double x, y;
};

Using C++ Objects

Classes define a new data type.

> Variables of class type are called objects and can be used like other types (int,
double, ...):

Point2D p = Point2D(3.0,4.1);

> The member variables and functions of an object are accessed over the variable
name followed by a dot and the name of the variable/function:

std::cout << p.norm() << ’\n’;

» Objects of a class can be used like ordinary variables:

Point2D p2 = p;
p.add(p2);

Encapsulation

» Data members and methods of a class can be either public (accessible from
outside the class) or private (accessible only from methods of the same class).

> If you try to access a private member from outside the class, you get a compiler
error:

std::cout << p.x << ’\n’;

> It is advisable to make the data members of a class private. This is called
encapsulation and facilitates a later change of the way the data is stored, which
can often greatly improve performance.

Namespaces

> Let us assume you want to use two existing libraries with the header files
linear solver.h and nonlinear_ solver.h.

> Both define a function solve_problem().
» The compiler cannot distinguish between them!

» How can you use both libraries without name conflicts?

Namespaces

C++ uses namespaces, which allows an easy resolution of this problem:

namespace linsolv {
#include<linear_solver .h>

}

namespace nonlinsolv {
#include<nonlinear_solver.h>

}

int main() {
linsolv::solve_problem();
nonlinsolv::solve_problem();

}

Each class automatically defines a namespace with the name of the class which
contains its data members and functions.

10

Builtin Namespace std

> C++ also contains a library of useful functions and classes the so called standard
library.

> Beginners often write

using namespace std;

at the top of their program, which imports all functions of the standard library
into the global namespace.

» You should NEVER do this as it can lead to name conflicts and reduces flexibility
in further development!

11

Builtin Namespace std

Just write the namespace std: : in front of the functions and types instead:

#include <iostream>
#include <cmath>

int main ()

{
double v = 2.0;
double s = sqrt(v);
std::cout << "The;square_ root of " << v
<< "isy" << s << °’\n’;
}

If you use the auto-completion features of modern editors, this is not much typing
overhead and much less work than rewriting your code later.

12

Automatic Type Deduction

Since C++11 the type needed for a variable can be detected automatically if it can be
deduced from the initialization of the variable. This is indicated with the keyword auto.

#include <vector>

int £() {
return 1;

}

int main() {

auto varl = 5678;
auto var2 = ’x’;
auto var3 = f();
auto vector = std::vector<double>(5);

13

auto: Advantages

» Using auto instead of manually writing the exact type (e.g. int) has a lot of
advantages (at the expense of a bit of detailed control):
> If you create a variable with auto, it will always be initialized with an defined value,
which avoids a whole class of very subtle bugs.

> If you write auto, the compiler can choose the right type, reducing the risk of errors.

» When using advanced libraries like DUNE, the types of variables can become very
complicated, making it difficult to read code that spells out those types.

» Only since C++14 it is possible to use auto in function definitions and
declarations.

14

auto and literals

For type deduction with auto the usual rules for C++ literals apply:

#include<string>

int main() {
// upper case letters can be used for suffices as well
auto varl = 5.0; // double
auto var2 = 5.0f; // float
auto var3 = 5.01; // long double

auto var4 = 5; // int

auto varb5 = 51; // long

auto var6 = 5u; // unsigned int

auto var7 = 5ul; // unsigned long int

auto var8 = ’a’; // char

auto var9 = "a'; // const char *

auto varA = std::string("a"); // string object
auto varB = new int; // pointer to int

References

» If variables are passed to a function in C4++-, by default a copy of the variable is
generated.

> References are an alternative, which only generates a new name for the same data.

> References are generated by adding a & between the data type and the variable
name, e.g. int& blub=blob or int f(int& a).

> You can only generate references to existing variables not to literals!

16

auto and References

> |If you want to make a variable a reference with automatic type deduction write
auto& instead of auto:

/* Copying */

auto i = 4;

auto j = i; // i = 4, j = 4, j is a copy

io+= 1 // i =5, j =4

j -=1; // v =6, 7 =23

j o= i // i =5, j=25

/* Referencing */

auto& k = i; // % = 5, k = 5, k is a reference to 1%
i = 2 // 1 =2, 5 =05, k=2

i += 1 // i =3, j =5, k =23

k = 8; // % =8, 7 =05, k=28

Generic Programming

» Often the same algorithms are needed for different data types.

> Without generic programming one has to write the same function for all data
types, which is tedious and error-prone, e.g.

int Square(int x) { long Square(long x) {
return (x*x) ; return (x*x) ;

} }

float Square(float x) { double Square(double x) {
return (x*x); return (x*x);

} }

» Generic programming allows to write the algorithm once and parametrise it with
the data type.

18

Template functions

> A function template starts with the keyword template and a list of one or more
template arguments in angle brackets separated by commas:

template<typename T>
T Square(T a) {
return (ax*a);

}

> If a template is used, the compiler can automatically generate the function from
the function template according to the function arguments (as with overloading
the return type is not relevant).

> The template arguments can also be specified explicitly:

std::cout << Square<int>(4) << ’\n’;
» The argument types must fit the declaration

19

Example: Unary Template Function

#include <cmath>
#include<iostream>

template<typename T>
T Square(T a) {
return (a*a);

}

int main() {
std::cout << Square<int>(4) << ’\n’;
std::cout << Square<double>(M_PI) << ’\n’;
std::cout << Square(3.14) << ’\n’;

20

Example: Binary Template Function

#include <cmath>
#include<iostream>

template<class U>

const U& max(const U& a,

if (
else

}

a>b)

return(a);

return(b);

int main() {

std:
std:
std:
std:
std:

:cout
:cout
:cout
:cout
:cout

<<
<<
<<
<<
<<

max (1,4) << ’\n’;

const U& b) {

max (3.14,7.) << ’\n’;

max (6.1,4) << ’\n’;

max<double>(6.1,4) << ’\n’;

max<int>(6.1,4) <<

’\n’;

// compiler error
// correct
// warning

21

Useful predefined template functions

The C++ standard library already provides some useful template functions:

» const T& std::min(const T& a, const T& b)
minimum of a and b

auto ¢ = std::min(a,b);

» const T& std::max(const T& a, const T& b)
maximum of a and b

auto ¢ = std::max(a,b);

> void std::swap(T& a, T& b)
swap a and b

std::swap(a,b);

22

Class Templates, Non-type Template arguments,
default arguments

template<typename T, int dimension = 3>
class NumericalSolver {

protected:
T variable;
};
> Template arguments can be used in class declarations.

> Not only types, but also integer values can be used as template arguments. The
values used in the template instantiation have to be compile time constants.

> If templates are used in a class definition, the last template arguments can have
default values.

» The name of a class is the class name plus the template parameters

23

Inheritance from Class Templates

template<typename T>

class MyNumericalSolver : public NumericalSolver<T,3> {
T myVariable;
public:
MyNumericalSolver (T val) : NumericalSolver<T,3>(),
myVariable (val)
{
std::cout << NumericalSolver<T,3>::variable
<< ’\n’;
i

>

> If a class is derived from a template class, the template arguments have to be
given as part of the base class name.

> the same is true for the call of base class constructors and the prefixing of base
class members and methods.

24

Using Members of a Template Base Class

template<typename T>

class MyNumericalSolver : public NumericalSolver<T,3> {
T myVariable;
public:
MyNumericalSolver (T val) : NumericalSolver<T,3>(),
myVariable (val)
{
this->variable=val;
rg

i

» The members of a template base class are often not automatically resolved
correctly

» To avoid problems, it is (as a rule of thumb) helpful to always prefix base class
members (methods as well as variables) with this->

25

Template Compilation

> If templates are not used and therefore are not instantiated, the template code is
only checked for crude syntax errors (e.g. missing semicolons) by the compiler.

> The test, if all function calls are valid, is conducted when a template is
instantiated. Errors like missing functions are only detected then. The error
messages can be rather strange.

P As the code is only created at the template instantiation, the compiler has to
know at this time the whole function definition not only its declaration.

» The usual subdivision into header and source files is therefore not possible for
templates.

26

Template Compilation

»

| 4

To save computation time and memory, only class functions which are really called
are generated.

Thus class templates can also be instantiated for types which do not support all

necessary operations as long as the methods where they are needed are never
called.

If template classes have long argument lists, typedefs are helpful:

typedef Point2D Pj;
auto coord = P(8,1);

27

Template Aliases

template <typename U>
using VectorSpace = Dune::PDELab::Backend::Vector<GFS,U>;

int main() {
using int32 = int;
using Vector =
typename Dune::PDELab::Backend::Vector<GFS,double>::type;
auto v = Vector (gfs);
using Function = void (%) (double);
VectorSpace<float> blub;

» An alternative method to define abbreviations for long type names is called
“template aliasing”.

> Also partial template aliasing is possible fixing some of the template arguments.

28

Keyword typename

template<typename T, int dimension = 3>
class NumericalSolver : public T::ClassType
{

typename T::SubType doSomething(
typename T::0therSubType argument);

private:
typename T::SubType variable;

» In C4++ by default a member of a class template is assumed not to be a type but
a (static) variable.

» The typename keyword is needed to indicate that the member of a class (which is
given as or depends on a template parameter) is a type.

» It is only needed/allowed inside a template.

P It is not used in a list of base class specifications or in a list of member initializers
in a constructor definition

29

Keyword .template

class A
{
public:
template<class T> T doSomething() { };
}s
template<class U> void doSomethingElse(U variable)
{
char result = variable.template doSomething<char>();
}
template<class U,typename V> V doSomethingMore (U *variable)
{
return variable->template doSomething<V>();
}

» C++ assumes by default that every "<’ character following an object is the start
of a comparison.
» The keyword template in front of such a method name indicates that an explicit

template parameter follows.
30

The C++ Standard Library

The standard library (sometimes called STL for Standard Template Library) is
> a collection of useful template functions and classes
> available for all modern C++ compilers
> optimised for efficiency

> a lot safer than using plain C libraries and data structures

31

STL-Containers

> Data representation is often crucial for the efficiency of algorithms

» The STL defines containers and algorithms to use them

» Containers are used to manage a collection of elements

> lterators provide a common interface to traverse the elements of a container
> There is a wide variety of containers optimised for different purposes:

Vector: Set/Multiset:

T TR e SR l
o_4do

Deque: D D

o I Map/Multimap:

List:

figure from: N. M. Josuttis: The C++ Standard Library, Addison-Wesley

Library Example: dynamic array

The STL contains a dynamic array called std: :vector which is a lot better than its
plain C counterpart:

| 2

vvvyyy

It automatically frees the memory when you don’t need it anymore, avoiding
memory leaks.

It knows about its size, so you don't have to remember it.

It can automatically resize itself if you need a larger vector.

It is a template: You specify the type of object to store inside of it.
It is fast.

33

Vector Example

The following example shows how to use a std: :vector:

#include <iostream>
#include <vector>

int main() {
auto b = std::vector<double>(7); // a vector for 7 doubles
std::cout << b.size() << ’\n’; // output the size
for (int i = 0; i < b.size() ; ++i)
b[i] = i*0.1; // assign some data
auto ¢ = b; // create a copy, automatically copying all
c.resize (15); // Make c bigger
std::cout << b.size() << ’'\n’; // still 7
b.push_back(3.8); // make b larger and append the value 3.8

data

34

lterators

> An essential part of the Container concept is a generalised scheme to iterate over
all elements stored in a container, which is independent of the container type
using so-called iterators.

P> The syntax of iterator usage is derived from the usage of pointers in ordinary C.

» Each container has a method begin(), which returns an iterator pointing to the
first member of the container.

» The iterator has the data type containerclass::iterator (but you don't need to
know this if you use auto).

> If you call the increment operator ++ of the iterator, it will afterwards point to the
next element.

» You can check if you reached the end of the container by comparing the iterator
to container.end().

35

lterators

> To access the element to which the iterator points, you have to dereference it,
e.g. *it

> If the element of the container is an object of a class, you can also use the
operator it-> to access data members or functions of the class.

#include<iostream>
#include<vector>

int main(int argc, char** argv) {
std::vector<int> vec;
for (int i = 0; i < 10; ++i)
vec.push_back(i);

for (auto it=vec.begin(); it!=vec.end(); ++it)
std::cout << *it << " ";
std::cout << ’\n’;

Range-based for Loops

With range-based for loops the same operation (iterating over a whole container) can
be written much simpler:

for (auto d : vec)
std::cout << d << ’\n’;
» Works for C arrays and all STL containers.
> Also important for using DUNE!

» Careful: what you get in a range-based for-loop is not an iterator. You don't
have to dereference it. You can directly use it to access the content.

37

Range-based for Loops

You can get either a copy or a reference (if you write auto&) of the element currently
accessed.

#include<iostream>
#include<vector>

int main() {
std::vector<double> x(5);

int i=0;
for (auto& y : x) { // with reference
y =i % 1.2; // can be changed
++1;
}
for (auto y : x) { // with copy
y *= y; // original container unchanged

std::cout << y << ’\n’;
}
}

38

Decltype

» decltype determines the result type of an expression (not the result value). It
can be used to make matching variables.

int a,b;
decltype (a+b) c;

> Together with template aliasing it can be used to store types:
using type = decltype(expression)
» Difference to auto: Does not create a variable of the same type but stores the type, also
preserves references.
» Good if you want to store the result of a function call in a container.
template<typename Vector>
auto squareroot_values(const Vector& v) {
using R = decltype(sqrt(v[0]));
auto result = std::vector<R>();
for (auto d : v)

result.push_back(std::sqrt(d));
return result;

39

Lambda functions

» C++11 introduced a simplified possibility to create (mostly temporary) functions,
so-called lambda expressions or lambdas.

> Example:
auto f = [](auto x) -> double {
double y = x;
return std::sin(y);
};
» There is an even shorter version for simple expressions (return type auto-deduced):

auto f = [](auto x) { return std::sin(x); I};

» Lambdas can be stored like variables, the type of lambda functions is
implementation-defined. Thus auto variables have to be used.

40

Lambda functions: Syntax

[capture-list] (parameter-list) -> return-type { code; }

>
>

Lambdas do not have a function name.

They start with a capture list, determining which variables from the surrounding
scope are available inside the lambda

This is followed by an ordinary parameter list, a return-type and finally the code
block of the function.

There are two types of capture: by value (creates a copy) or by reference (points
to the original variable)

Usage: List variable names, add ampersand (&) for references

Shortcuts: [=] capture all variables by value, [&] capture all variables by reference
Since C++17 it is also possible to capture a variable as constant reference:
[&v=std: :as_const(v)]

Caution: When using capture by reference, make sure the original variable still
exists when calling the lambda function!

41

Lambda functions: Capture Example

auto pi = 3.14;

auto f = [pi](auto x) { return pi * x; };

auto g = [&pi] (auto x) { return pi * x; };
£(1); // returns 3.14;

g(1); // returns 3.14;

pi = 3.141;

£(1); // returns 3.14 - wvalue was copied!
g(1); // returns 3.141 - walue was referenced!

int call_count = 0;
auto h = [&](auto x) {
++call_count;
return pi + x;
}
h(1); // returns 4.141
std::cout << call_count << ’\n’; // prints 1

Accumulation using for_each: lambda function

Lambda functions are very useful for template algorithms as e.g. defined by the
standard template library. The for_each algorithm applies a function object to each of
the elements of a container.

auto coll = std::vector<double>();
int count = 0;
double sum = O0;

std::for_each(coll.begin(),coll.end(),
[&] Cauto x){ ++count; sum += x; });
std::cout << sum / count << ’\n’;

43

Further Reading

Bjarne Stroustrup.

Programming: Principles and Practice Using C++.

Addison Wesley, 2014.

Bjarne Stroustrup.
The C++ Programming Language.
Addison Wesley, 2013.

The cppreference community.
The community C++ reference web site.
http://cppreference.com.

a

http://cppreference.com

Further Reading

E

[

Bjarne Stroustrup.

Programming: Principles and Practice Using C++.

Addison Wesley, 2014.

Bjarne Stroustrup.
The C++ Programming Language.
Addison Wesley, 2013.

The cppreference community.
The community C++ reference web site.
http://cppreference.com.

a

http://cppreference.com

	Compiling Programs on Linux
	Object-Oriented Programming
	Namespaces
	Automatic Type Deduction
	Templates
	The C++ Standard Library
	Range-based for Loops
	Type Deduction for Function Argumetns
	Lambda Functions
	References

