
Exercises for Tutorial04

Finite Elements for the Wave Equation

In this exercise you will:

• Work on the problem presented in tutorial04.

• Try various time integrators, in particular the Crank-Nicolson method.

• Explore polynomial degrees greater than 2 (remember to change the blocking
to none!).

• Implement your own local operator that switches to an elliptic projection
method (see the tutorial notes and Eriksson et al. [1])

• Check the energy conservation property in the numerical scheme.

Exercise 1 Getting to Know the Code

The code of exercise04 solves the wave equation formulated as a first order in time
system. As already explained in tutorial04, we can write the wave equation as a
system of two equations by substituting u0 = u and introducing u1 = ∂tu0 = ∂tu:

∂tu1 − c2∆u0 = 0 in Ω× Σ, (1a)

∂tu0 − u1 = 0 in Ω× Σ, (1b)

u0 = 0 on ∂Ω, (1c)

u1 = 0 on ∂Ω, (1d)

u0 = q at t = 0, (1e)

u1 = w at t = 0. (1f)

Since u0 = u = 0 on the boundary we also have ∂tu = u1 = 0 on the boundary.
Alternatively, one may also simply omit the boundary condition on u1.

The code for this exercise can be recompiled individually in your build direc-
tory by typing make:

[user@localhost]$ cd release -build/dune -pdelab -tutorials/

↪→ tutorial04/exercise/task

[user@localhost]$ make clean && make

Note that in contrast to earlier exercises, three different executables are built
from the same source files, one each for 1D, 2D and 3D, in order to reduce compile
times and compiler memory usage.

The structure of the code is very similar to the previous tutorials and consists
of the following files:

1



• exercise04.ini – holds parameters read by various parts of the code which
control the execution,

• exercise04.cc – main program,

• driver.hh – instantiates the necessary PDELab classes for solving a linear
instationary problem and finally solves the problem,

• wavefem.hh – contains the local operator classes WaveFEM and WaveL2 realizing
the spatial and temporal residual forms r(u, v, t) and m(u, v, t), respectively.

As in the previous exercises you can control most of the settings through the
ini-file exercise04.ini. Get an overview of the configurable settings, compile and
run exercise04.

The program writes output with the extension pvd. This is one of several ways
to write VTK output for the instationary case, c.f. the documentation of tutorial03.
The pvd-file can be visualized by ParaView and consists of a collection of the cor-
responding vtu-files. In order to visualize a 1D solution, one can apply the ”Plot
Over Line ” filter. Note that our solution is always given by u0.

Exercise 2 Try various time integrators, in particular the Crank-
Nicolson method

We want to examine the numerical solution under different time discretization
schemes, eg. Implicit Euler or Crank-Nicolson. In order to change the time dis-
cretization scheme you will have to go to the file driver.hh and search for the line

Dune:: PDELab :: Alexander2Parameter <RF > pmethod;

Recall the previous exercise03 and change the one step θ scheme in a way that
corresponds to the Crank-Nicolson method.

Note that you can compare the solutions in ParaView. To do that you have
to rename the second solution in exercise04.ini and use the ”Append Attributes”
filter before ”Plot Over Line”. Do not forget to change the parameter torder in
exercise04.ini in order to get the correct scheme.

Remark You can decide which dimension to investigate. A 2D simulation will
give you nicer pictures at the cost of longer run times.

Exercise 3 Explore polynomial degrees greater than 2 by changing
the blocking to none.

Step 1: Find the place where your Local Finite Element Maps are created and
make it possible to use polynomial degree 3

Dune:: PDELab :: PkLocalFiniteElementMap <GV ,DF ,double ,deg > FEM;

Compile your program and check the results.

2



Note that deg is a static template parameter.

The program should throw an assertion error during compilation.

Step 2:

Before we start please have a look at the description of the driver in tutorial04

↪→ and read the part that describes the specification of an ordering when creating
product spaces. Using fixed block structure in ISTL requires that the number of
degrees of freedom per entity is constant for each geometry type. This is true for
polynomial degrees one and two but not for higher polynomial degree!

To avoid segfaults you need to change

using VBE = Dune:: PDELab ::istl:: VectorBackend <Dune:: PDELab ::

↪→ istl:: Blocking ::fixed >;

to

using VBE = Dune:: PDELab ::istl:: VectorBackend <Dune:: PDELab ::

↪→ istl:: Blocking ::none >;

in driver.hh.

Exercise 4 Changing the Local Operator

Now consider the elliptic projection as in Eriksson et al. [1], namely applying the
Laplacian to equation (1b)

−∆∂tu0 + ∆u1 = 0, (2)

which has the advantage of energy conservation but requires additional smoothness
properties.

The main work is now to change the local operators given in the file wavefem.hh.
This is done in several steps:

• Copy the file wavefem.hh to a new file and rename it.

• Rename the local operators in the new file, e.g. change WaveL2 to WaveElip.

• Include your new file in exercise04.cc and change the types of LOP and TLOP

in driver.hh.

// Make instationary grid operator

double speedofsound = ptree.get("problem.speedofsound"

↪→ ,1.0);

using LOP = WaveFEM <FEM >;

LOP lop(speedofsound);

using TLOP = WaveL2 <FEM >;

TLOP tlop;

3



After these preparations you need to implement the following change:

∂tu0 − u1 = 0⇒ ∆∂tu0 −∆u1 = 0.

• In the spatial local operator, change:

−u1 = 0⇒ −∆u1 = 0

See how it is done for the ∆u0, we recall the corresponding part of WaveFEM::
↪→ alpha_volume():

// integrate both equations

RF factor = ip.weight () * geo.integrationElement(ip.

↪→ position ());

for (size_t i=0; i<lfsu0.size(); i++) {

r.accumulate(lfsu0 ,i,c*c*( gradu0*gradphi[i][0])*

↪→ factor);

r.accumulate(lfsu1 ,i,-u1*phihat[i]* factor);

}

• In the temporal local operator, change:

∂tu0 = 0⇒ ∆∂tu0 = 0

See how it is done for the ∆u0, we recall the corresponding part of WaveL2::
↪→ alpha_volume():

// integrate u*phi_i

for (size_t i=0; i<lfsu0.size(); i++) {

r.accumulate(lfsu0 ,i,u1*phihat[i]* factor);

r.accumulate(lfsu1 ,i,u0*phihat[i]* factor);

}

• Do not forget to update the jacobian_volume() methods accordingly. As the
problem is linear, this should not be too difficult.

Exercise 5 Energy conservation

If we multiply (1a) by u1 and (2) by u0 and add, the terms −(∆u0, u1) and (∆u1, u0)
cancel out, leading to the conclusion that the energy

E(t) = ‖u1‖2 + ‖∇u0‖2

is constant in time.

Your task is to check the energy conservation for the elliptic projection and
Crank-Nicolson in time. You can use the following PDELab utilities:

4



Dune:: PDELab :: SqrGridFunctionAdapter

Dune:: PDELab :: integrateGridFunction

Dune:: PDELab :: DiscreteGridFunctionGradient

Dune:: PDELab :: SqrGridFunctionAdapter

If you have problems with this task check the online documentation https:

//www.dune-project.org/doxygen/pdelab/master/ or the solution.

Additional task
If you are done with these exercises, you can play with the initial conditions. Use
the following setting in one space dimension:

• Change the initial conditions to sin(2x) (implement it as a lambda function)

• Change the domain size to [0, π]

References

[1] K. Eriksson, D. Estep, P. Hansbo, and C. Johnson. Computational Differential
Equations. Cambridge University Press, 1996. http://www.csc.kth.se/~jjan/

private/cde.pdf.

5

https://www.dune-project.org/doxygen/pdelab/master/
https://www.dune-project.org/doxygen/pdelab/master/
http://www.csc.kth.se/~jjan/private/cde.pdf
http://www.csc.kth.se/~jjan/private/cde.pdf

