
DUNE/PDELab Course 2021

Speaker:

Olaf Ippisch
Institut für Mathematik
TU Clausthal

DUNE PDELab Tutorial 06
Parallel Computing

Contents

Introduction

Domain Decomposition

Parallel Grids

Communicating Data with Dune

Parallel PDELab

1

Why Parallel Computing?

I The speed of individual computer cores is not increasing essentially since nearly 20
years due to
I Power wall
I Memory wall
I Instruction level parallelism (ILP) wall

I However, the number of cores is increasing. Quad-cores are the rule, up to
260-core processors are available

I Several multi-core processors can be used on one mainboard (e.g. two 32-core
processors)

I Computer cluster with several multi-core multi-processor servers are affordable
even for small companies

2

Why Parallel Computing?

The worlds four fastest computers (November 2020) have
I Fugaku, Kōbe, Japan: 442.0 PFlop/s

7’630’848 cores:
I 158’976 A64FX48-core processors

I Summit, Oak Ridge National Laboratory, U.S.A.: 148.6 PFlop/s
202’752 CPU cores + 2’211’840 GPU cores. 4’608 nodes with
I 2 IBM Power9 22-core processors each
I 6 Tesla-Volta 100 80-core accelerator cards each

I Sierra, Lawrence Livermore National Laboratory, U.S.A.: 94.6 PFlop/s
190’080 CPU cores + 1’382’400 GPU cores. 4’320 nodes with
I 2 IBM Power9 22-core processors
I 4 Tesla-Volta 100 80-core accelerator cards

I Sunway TaihuLight, Wuxi, China: 93.0 PFlop/s
10’649’600 cores:
I 40’960 SW26010 260-core processors

3

Architectures of Parallel Computers

I Shared-memory computing: all cores have access to the whole memory
I Uniform memory access architecture (UMA):

access to every memory location from every process takes the same amount of time
(few multi-core CPUs)

I Non-uniform memory access architecture (NUMA):
memory is associated with a processor or a group of processor cores but address
space is global. Local memory can be accessed faster than memory attached to
other processors or other parts of the same processor (most multi-core CPUs,
multi-processor servers)

I Message passing architecture (MP):
each process can only access local memory, information is exchanged between
processes with messages send over a network (computer clusters, super computer)

4

Comparison of Architectures by Example

I Given vectors x, y ∈ RN , compute scalar product s =
∑N−1

i=0 xi yi :
(1) Subdivide index set into P pieces.
(2) Compute sp =

∑(p+1)N/P−1
i=pN/P xi yi in parallel.

(3) Compute s =
∑P−1

i=0 si .
I Uniform memory access architecture: Store vectors as in sequential program:

x y M

I Nonuniform memory access architecture: Distribute data to the local memories:

x1 y1 M1 x2 y2 M2 xP yP MP

I Message passing architecture: Same as for NUMA!
I Parallelisation effort for NUMA and MP is almost the same.
I Distributing data structures is hard and not automatic in general.

5

Message Passing

I Users view: Copy (contiguous) memory block from one address space to another.
I During transmission the message is subdivided into individual packets.
I Network is packet-switched.
I A packet consists of an envelope and the data:

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

trailer payload header

direction →

I Header: Destination, size and kind of data.
I Payload: Size ranges from some bytes to kilobytes.
I Trailer: e.g. checksum for error detection.

6

The Message Passing Interface (MPI)

I Portable Library with functions for message exchange between processes
I Developed 1993-94 by a international board
I Available on nearly all computer platforms
I Free Implementations for Linux Clusters: MPICH and OpenMPI 1

I Properties of MPI:
I library with C- and Fortran bindings (no language extension)
I large variety of point-to-point communication functions
I global communication
I data conversion for heterogeneous systems
I subset formation and topologies possible
I parallel I/O, one-sided communication and dynamic process management (MPI-2)
I hybrid-parallelism (MPI-3)

1
http://www-unix.mcs.anl.gov/mpi/mpich and http://www.open-mpi.org/

7

http://www-unix.mcs.anl.gov/mpi/mpich
http://www.open-mpi.org/

Strong Scalability of 3D Parallel Computation

3D DNAPL Infiltration

8

Strong Scalability of 3D Parallel Computation

Simulation of a DNAPL infiltration with a coarse lense on a grid with 160× 160× 96
unknowns on a server with 4×12 AMD Magny Cours, 2.1 GHz, 12×0.5MB L2, 12MB
L3 processors.
Computation time for one time step with BiCGStab + AMG prec.:

P #IT(max) Tit S Tasm S Ttotal S
1 6.5 4.60 - 43.7 - 713.8 -
4 10 1.85 2.5 17.5 2.5 295.9 2.4
8 9 0.63 7.3 8.4 5.2 127.1 5.6

16 9.5 0.40 11.5 4.1 10.7 73.1 9.8
32 15 0.27 17.0 1.9 23.0 43.5 16.4

9

Contents

Introduction

Domain Decomposition

Parallel Grids

Communicating Data with Dune

Parallel PDELab

10

Domain Decomposition

I partition a problem by splitting the domain into smaller subdomains
I each part is solved by a different process
I goes back to an idea of H.A. Schwarz who in 1890 presented a method to prove

the existence of solutions of the Laplace equation on “complicated” domains.
I Different variants:

I overlapping domain decomposition
I non-overlapping domain decomposition

T(Ω)Ω

T(Ω)1

T(Ω)2

11

Nonoverlapping Domain Decomposition

I Given a domain Ω ⊆ Rd

I partition Ω into non-overlapping sub-domains:

Ωi :
p⋃

i=1
Ωi = Ω, Ωi ∩ Ωj = ∅ ∀i 6= j .

12

Overlapping Domain Decomposition

I Extend each Ωi by an overlap Ω̂i of width β ·H:

Ω̂i = {x ∈ Ω | dist(x ,Ωi) < β · H}

13

Contents

Introduction

Domain Decomposition

Parallel Grids

Communicating Data with Dune

Parallel PDELab

14

Recapitulation: The Grid: A Container of Entities

In the DUNE sense a Grid is a container of entities:

I vertices ,
I edges ,
I faces ,
I cells , . . .

In order to do dimension independent programming, we need a dimension independent
naming for different entities.
We distinguish entities according to their codimension.
Entities of codim = c contain subentities of codim = c + 1. This gives a recursive
construction down to codim = d .

15

Recapitulation: The Grid: A Container of Entities

In the DUNE sense a Grid is a container of entities:

I vertices ,
I edges ,
I faces ,
I cells , . . .

In order to do dimension independent programming, we need a dimension independent
naming for different entities.

We distinguish entities according to their codimension.
Entities of codim = c contain subentities of codim = c + 1. This gives a recursive
construction down to codim = d .

15

Recapitulation: The Grid: A Container of Entities

In the DUNE sense a Grid is a container of entities:

I vertices (Entity codim = d),
I edges (Entity codim = d − 1),
I faces (Entity codim = 1),
I cells (Entity codim = 0), . . .

In order to do dimension independent programming, we need a dimension independent
naming for different entities.
We distinguish entities according to their codimension.
Entities of codim = c contain subentities of codim = c + 1. This gives a recursive
construction down to codim = d .

15

Recapitulation: Iterators

Access to the entities of a grid is given by iterators provided by a GridView. DUNE
provides appropriate iterators for both LeafGridView and LevelGridView.

GridView::Codim<c>::Iterator
iterates over codimension c entities on a
given view.

16

Recapitulation: Entities

Iterating over a grid view, we get access to the entities.
template <class GridView >
void do_something(const GridView &gv) {

// iterate over the grid
for (auto entity : entities(gv,DUNE::Codim <0>)) {

...
}

}

I Entities cannot be modified.
I Entities can be copied and stored (but copies may be expensive).
I Entities provide topological and geometrical information.

17

Recapitulation: Entities

An Entity E provides both topological information
I Type of the entity (triangle, quadrilateral, etc.).
I Relations to other entities.

and geometrical information
I Position of the entity in the grid.

ν

ζ

TE

E

Ω̂

x

y

Mapping from Ω̂ into global coordinates.

Entity E is defined by. . .
I Reference Element Ω̂
I Transformation TE

GridView::Codim<c>::Entity implements the entity concept.

18

Partition Types

I Each grid entity can be present on one or more processes.
I Each entity on one process has a partition type, which can be determined by the

method
entity.partitionType()

I The possible partition types are:
interior Entity is owned by the process
overlap Entity is owned by a different process, but a full copy exists
ghost Entity is owned by a different process, but a partial copy

exists
border Boundary of interior. (only exists for entities with

codimension>0)
front Boundary of interior+overlap if not border (only exists for

entities with codimension>0)

19

Partition Types Example

c = 0

c = 0

c = 0

c = 1

c = 1

c = 1

c = 2

c = 2

c = 2

1

First row: with
overlap and ghosts
Second row: with
overlap only
Third row: with
ghosts only

interior
overlap
ghost
border
front

not stored
20

Parallel Grids in Dune

I YaspGrid
I structured
I n-dimensional
I arbitrary overlap

I Unstructured 2D/3D grids with full load-balancing:

I UGGrid
I multi-element (e.g. tetrahedrons, pyramids, prisms and hexahedrons simultaneously in

3D)
I non-conforming/conforming refinement
I ghost cells

I ALUGrid
I either tetrahedral or hexahedral elements
I non-conforming refinement, conforming bisection refinement for 3D tetrahedral grid
I ghost cells (non-conforming grids only)

21

Parallel Grids in Dune

I YaspGrid
I structured
I n-dimensional
I arbitrary overlap

I Unstructured 2D/3D grids with full load-balancing:
I UGGrid

I multi-element (e.g. tetrahedrons, pyramids, prisms and hexahedrons simultaneously in
3D)

I non-conforming/conforming refinement
I ghost cells

I ALUGrid
I either tetrahedral or hexahedral elements
I non-conforming refinement, conforming bisection refinement for 3D tetrahedral grid
I ghost cells (non-conforming grids only)

21

Parallel Grids in Dune

I YaspGrid
I structured
I n-dimensional
I arbitrary overlap

I Unstructured 2D/3D grids with full load-balancing:
I UGGrid

I multi-element (e.g. tetrahedrons, pyramids, prisms and hexahedrons simultaneously in
3D)

I non-conforming/conforming refinement
I ghost cells

I ALUGrid
I either tetrahedral or hexahedral elements
I non-conforming refinement, conforming bisection refinement for 3D tetrahedral grid
I ghost cells (non-conforming grids only)

21

Iterators in a parallel Grid

Dune offers Iterators which only iterate over elements with certain partition types. The
partition type can be specified as additional parameter in the range based for loop, e.g.

for (const auto &cell : elements(gv,Dune:: Partitions :: Interior) {
...
}

Dune::Partitions contains the following partitions:
Interior interior entities only
Border border entities only
Overlap overlap entities only
Front front entities only
InteriorBorder interior entities plus border (identical to

Interior for entities of codimension==0)
InteriorBorderOverlap interior, border and overlap entities
InteriorBorderOverlapFront interior, border, overlap and front entities
Ghost ghost entities only
All all entities available to the process

22

Example

#include <dune/grid/somegrid.hh>

void iterate_the_grid () {
// we have a grid
Dune:: SomeGrid grid(parameters);

// iterate over the interior Border Partition of level 2
auto levelGV = grid.levelGridView (2);
for (const auto &face : facets(levelGV ,Dune:: Partitions :: InteriorBorder) {

...
}

// iterate over all partition of the leaf
auto leafGV = grid.leafGridView ();
for (const auto &node : entities(leafGV ,Dune::Codim <DIM >,Dune:: Partitions ::All

) {
...

}
}

23

Repetition: Intersections

Ê

Ê ′

Î

TI,E

TI,E′

Entity E

Entity E ′

Intersection I

TE

TI

TE′

I Grids may be non conforming.
I Entities can intersect with neighbours and

boundary.
I IntersectionIterators give access to intersections

of an Entity in a given view.
I Intersections hold topological and geometrical

information.
I Intersections depend on the view:
I Note: Intersections are always of codimension

1!

24

Intersection Interface

Iterating over intersections in entity E yields an Intersection to E ′ with the methods:

Ê

Ê ′

Î

TI,E

TI,E′

Entity E

Entity E ′

Intersection I

TE

TI

TE′

Method name Result
boundary Boolean
neighbor Boolean
inside Entity E
outside Entity E ′

geometry Geometry TI
geometryInInside Geometry TI,E
geometryInOutside Geometry TI,E ′

unitOuterNormal outer normal n,
|n| = 1

centerUnitOuterNormal outer normal at
geometry().center()

25

Intersections and Domain Decomposition

I On each intersection there exists a method neighbor(). This method returns
true if there is a neighbor available on the same process (even if it is a ghost).

I The method boundary() only returns true at the domain boundary (even if the
grid is periodic at this boundary) not at a process boundary.

I If there is no neighbor but also no domain boundary, there is a process boundary.

26

Example

for (const auto &cell : elements(gv,Dune:: Partitions :: InteriorBorder))
for(const auto &is : intersections(gv,cell)) {

// evaluate fluxes
Dune:: FieldVector <ctype , dim > center = is.geometry ().center ();
// neighbor intersection
if (is.neighbor ()) {

// mean flux
flux = (myshapefkt.gradient(center)

- nbshapefkt.gradient(center))
⁎ is.centerUnitOuterNormal ()
⁎ is.geometry ().volume ();

}
// boundary intersection
else if (is.boundary ()) {

// neumann boundary condition
flux = j(center);

}
}

27

Load-Balancing

I parallelization only scales well if all processes have the same work load
⇒ well balanced grids necessary

I adaptation leads to unbalanced work load
I UGGrid and 3D ALUGrid provide methods to re-balance the work load after grid

adaptation
loadBalance(DataHandle &data) :

re-balances a parallel grid, optionally sends also user data
DataHandle :

works like the data handle for the communicate methods

28

Grid-Distribution with YaspGrid

With YaspGrid you can determine how the grid is partitioned (adaptive grid refinement
and load-balancing are not possible as it is a structured grid) by writing a class derived
from Dune::YLoadBalance<dim>
template <int dim >
class YaspPartition : public Dune:: YLoadBalance <dim > {

public:
using iTuple = std::array <int , dim >;
void loadbalance (const iTuple& size , int P, iTuple& dims) const {

for (auto& x : dims)
x = 1;

dims.back() = P;
}

};

29

Grid-Distribution with YaspGrid

Now you can pass the object to the constructor during grid creation
const int dim =2;
Dune:: FieldVector <double ,dim > upper (1.0);
auto n = Dune:: filledArray <dim , int >(10);
std::bitset <dim > periodic(false);
int overlap = 1;
YaspPartition <2> yp;
YaspGrid <2> grid(upper ,n,periodic ,overlap ,helper.getCommunicator () ,&yp);

30

Contents

Introduction

Domain Decomposition

Parallel Grids

Communicating Data with Dune

Parallel PDELab

31

Communicating Data with Dune

I Data is associated with grid entities using an IndexSet.
I The index set provides indices for all entities stored by the process (i.e. the

Dune::Partitions::All)
I Data is stored locally.
I Algorithms may require data exchange e.g. for synchronization or the calculation

of updates
I Dune provides methods for the communication of data and methods for collective

communication

32

DUNE Lowlevel Communication API

GridView provides a method for the communication between processes
template <class DHImp , class DataType >
void communicate (CommDataHandleIF <DHImp , DataType > &datahandle ,

InterfaceType interface ,
CommunicationDirection dir) const;

where
I CommDataHandleIF

is a user defined class describing what data should be communicated. The class
has to provide methods to assemble the data on the source process and distribute
the data on the target process (see exercises).

33

DUNE Lowlevel Communication API

template <class DHImp , class DataType >
void communicate (CommDataHandleIF <DHImp , DataType > &datahandle ,

InterfaceType interface ,
CommunicationDirection dir) const;

where
I InterfaceType

Determines the partition type of the entities to be sent and received. With
InteriorBorder_InteriorBorder_Interface only border entities are sent. With
All_All_Interface, InteriorBorder_All_Interface and
Overlap_All_Interface all entities, only interior and border entities or only
overlap entities are sent. Only processes with common data communicate and
only the entities present on both processes are included in the communication.

I CommunicationDirection The direction of the communication can be changed
with either ForwardDirection or BackwardDirection

34

Collective Communication

I parallel computations require global communication (e.g. sum(defect) or min(∆t)
and synchronization, e.g. a barrier needed for timing)

I You can get a collective communication object by the following method of a
GridView:

const CollectiveCommunication & comm () const;

35

Collective Communication

The class Dune::Grid::CollectiveCommunication provides comfortable access to a
lot of MPI methods, e.g.
Method name Description
rank obtain number (rank) of this process
size obtain number of processes
barrier wait until all process arrived at the barrier
min global min of local values
max global max of local values
sum global sum of local values
allreduce Compute something over all processes for each component of an array

and return result in every process
broadcast broadcast from one process to all other processes
scatter scatter individual data from root process to all other tasks
gather, allgather gather data on root process (and distribute it to all other tasks)

36

Example

// get communication object from gridview
auto comm = gridview.comm ();
// get rank from communication object
int myRank = comm.rank ();
// get number of processes
int numProcs = comm.size ();
// calculate global sum (using MPI_Reduce)
double globalsum=comm.sum(localResult);
// calculate global maximum (using MPI_Reduce)
double globalmax=comm.max(localResult);
// broadcast result
comm.broadcast (&globalMax ,1,0);

37

MPIHelper

Dune parallel programs use a tool to help in setting up and handling the parallel
communication with MPI. It also takes care that the parallel program is finished in a
defined way. It is called MPIHelper. It has to be created at the very beginning of the
program using the instance method of the Dune::MPIHelper class.
int main(int argc , char⁎⁎ argv) {

try {
//Maybe initialize Mpi
Dune:: MPIHelper& helper = Dune:: MPIHelper :: instance(argc , argv);
if(Dune:: MPIHelper :: isFake)

std::cout << "This␣is␣a␣sequential␣program." << ’\n’;
else {

if(helper.rank()==0)
std::cout << "parallel␣run␣on␣" << helper.size() << "␣process(es)

" << ’\n’;
}

38

MPIHelper

I MPIHelper provides the methods
Method name Description
rank obtain number (rank) of this process
size obtain number of processes

I MPIHelper provides the static methods
Method name Description
getCommunicator get communicator to exchange data with

all process (MPI_COMM_WORLD)
getLocalCommunicator get communicator to exchange data with

the local process only (MPI_COMM_SELF)
getCollectiveCommunication get collective communication object for

MPI_COMM_WORLD
instance get access to the helper singleton

I MPIHelper additionally provides an enum isFake which is true if the program was
compiled without MPI support

39

Norms and Scalar-Products on Parallel Grids

If you have a parallel grid and for some reason want to calculate norms or scalar
products of vectors associated with degrees of freedom, you cannot calculate them
directly, as border entities exist on more than one process.
For an overlapping grid you need the class OverlappingScalarProduct. Additionally
you need the auxiliary class ISTL::ParallelHelper.
std::vector <double > dataVector(gv.indexSet ().size(dim));
// obtain data from some calculations
Dune:: PDELab ::ISTL:: ParallelHelper <GFS > parHelper(gfs);
Dune:: PDELab :: OverlappingScalarProduct <GFS ,std::vector <double >> ovlpScalProd(gfs ,

parHelper);
// calculate norm
norm=ovlpScalProd.norm(dataVector);

40

Norms and Scalar-Products on Parallel Grids

For a non-overlapping grid the respective class is NonoverlappingScalarProduct:
std::vector <double > dataVector(gv.indexSet ().size(dim));
// obtain data from some calculations
Dune:: PDELab ::ISTL:: ParallelHelper <GFS > parHelper(gfs);
Dune:: PDELab :: NonoverlappingScalarProduct <GFS ,std::vector <double >> novlpScalProd(

gfs ,parHelper);
// calculate norm via scalar product
double norm=sqrt(novlpScalProd.dot(dataVector ,dataVector));

41

Contents

Introduction

Domain Decomposition

Parallel Grids

Communicating Data with Dune

Parallel PDELab

42

Parallel PDELab

Parallel computing in PDELab is very easy.
I Go parallel by choosing

1. a suitable parallel grid,
2. the correct constraints for the discretization of the PDE (either

OverlappingConformingDirichletConstraints or
NonoverlappingConformingDirichletConstraints<GV>) , and

3. a suitable and matching parallel solver backend of the PDELab backend.

43

Parallel Solver Backends

I ISTL solvers need to be provided a Preconditioner (like Jacobi, SSOR or ILU), a
LinearOperator (providing a matrix-vector product) and a ScalarProduct. The
versions of these components have to fit together.

I Parallel solver backends make sure that the correct implementations of
Preconditioner, LinearOperator and ScalarProduct are chosen matching the
type of domain decomposition.

I Different solver backends are provided for overlapping and nonoverlapping domain
decomposition.

I The parallel solver backends can be found in the headers
dune/pdelab/backend/istl/ovlpistlsolverbackend.hh and
dune/pdelab/backend/istl/novlpistlsolverbackend.hh,
which are automatically included by istl.hh.

44

Parallel Preconditioners

I To run in parallel Conjugate Gradients (CG) and BiCGStab solvers have to be able
to compute parallel matrix vector products and scalar products.

I As parallel preconditioners to the CG and BiCGStab solvers additive Schwarz
methods can be used:
I In this schemes a local subproblem on each process is solved where the values of the

last iteration are used as Dirichlet constraints at the process boundary.
I Different solvers can be chosen for the local problems

(e.g. a direct solver like SuperLU or some steps of an iterative solver like SSOR).
I In an overlapping decomposition the corrections are computed for the overlap at

more than one process. The sum of the corrections multiplied with a relaxation
coefficient is applied.

I With an overlapping Schwarz method the convergence is better the larger the
overlap.

I There exists also an algebraic multigrid preconditioner for overlapping as well as
non-overlapping domain decomposition.

45

Parallel Solver Backends for Overlapping DD

The linear solvers in this table are preconditioned with an overlapping domain
decomposition using the respective smoother or with a parallel algebraic multigrid
scheme with an SSOR smoother (AMG).
solver backend smoother linear solver
ISTLBackend_OVLP_CG_SSORk<GFS,CC> SSOR CG
ISTLBackend_OVLP_CG_SuperLU<GFS,CC> SuperLU CG
ISTLBackend_OVLP_CG_UMFPack<GFS,CC> UMFPack CG
ISTLBackend_CG_AMG_SSOR<GO> AMG CG
ISTLBackend_OVLP_BCGS_SSORk<GFS,CC> SSOR BiCGStab
ISTLBackend_OVLP_BCGS_ILU0<GFS,CC> ILU0 BiCGStab
ISTLBackend_OVLP_BCGS_SuperLU<GFS,CC> SuperLU BiCGStab
ISTLBackend_BCGS_AMG_SSOR<GO> AMG BiCGStab

ISTLBackend_OVLP_ExplicitDiagonal<GFS> is a solver for explicit time-steppers with
(block-) diagonal mass matrix.
The template parameter GFS is the grid function space, GO is the grid operator, CC is
the type of the constraints container (usually
OverlappingConformingDirichletConstraints). 46

Overlapping Example

// 1. Create an overlapping grid
Dune:: FieldVector <double ,2> L(1.0);
auto N = Dune:: filledArray <2, int >(16);
std::bitset <2> periodic (false);
int overlap=2;
Dune::YaspGrid <2> grid(L,N,periodic,overlap);
using GV = Dune::YaspGrid <2>:: LeafGridView;
const GV& gv=grid.leafView ();

// 2. Create correctly constrained grid function space
using FEM = Dune:: PDELab :: Q1LocalFiniteElementMap <Coord ,Real ,dim >;
FEM fem;
using CON = Dune::PDELab::OverlappingConformingDirichletConstraints;
using VBE = Dune:: PDELab :: ISTLVectorBackend <>;
using GFS = Dune:: PDELab :: GridFunctionSpace <GV,FEM ,CON ,VBE >;
GFS gfs(gv ,fem);

47

Overlapping Example Continued

// define problem parameters
using Param = ConvectionDiffusionProblem <GV,Real >;
Param param;
using B = Dune:: PDELab :: BCTypeParam_CD <Param >;
B b(gv,param);
using G = Dune:: PDELab :: DirichletBoundaryCondition_CD <Param >;
G g(gv,param);

// Compute constrained space
using C = typename GFS:: template ConstraintsContainer <Real >:: Type;
C cg;
Dune:: PDELab :: constraints(b,gfs ,cg);
// Make grid operator
using LOP = Dune:: PDELab :: ConvectionDiffusion <Param >;
LOP lop(param ,2);
using MBE = Dune:: PDELab :: ISTLMatrixBackend;
using GO = Dune:: PDELab :: GridOperator <GFS ,GFS ,LOP ,MBE ,double ,double ,double ,C,C>;
GO go(gfs ,cg ,gfs ,cg ,lop);

48

Overlapping Example Continued

// Compute affine shift
using V = typename GO:: Traits :: Domain;
V x(gfs ,0.0);
Dune:: PDELab :: interpolate(g,gfs ,x);
Dune:: PDELab :: set_nonconstrained_dofs(cg ,0.0,x);

// 3. Choose a linear solver
using LS = Dune::PDELab::ISTLBackend_OVLP_BCGS_SuperLU<GFS,C>;
LS ls(gfs ,cg ,5000 ,2);
...

49

Parallel Solver Backends for Nonoverlapping DD

The linear solvers in this table are preconditioned with a nonoverlapping domain
decomposition using the respective smoother.
solver backend smoother linear solver
ISTLBackend_NOVLP_CG_NOPREC<GFS> – CG
ISTLBackend_NOVLP_CG_Jacobi<GFS> Jacobi CG
ISTLBackend_NOVLP_CG_SSORk<GO> SSOR CG
ISTLBackend_NOVLP_CG_AMG_SSOR<GO> AMG CG
ISTLBackend_NOVLP_BCGS_NOPREC<GFS> – BiCGStab
ISTLBackend_NOVLP_BCGS_Jacobi<GFS> Jacobi BiCGStab
ISTLBackend_NOVLP_BCGS_SSORk<GO> SSOR BiCGStab
ISTLBackend_NOVLP_BCGS_AMG_SSOR<GO> AMG BiCGStab

ISTLBackend_NOVLP_ExplicitDiagonal is a solver for explicit time-steppers with
(block-) diagonal mass matrix.
The template parameter is either GFS the grid function space or GO the grid operator
depending on the preconditioner.

50

Nonoverlapping example

// 1. Create an overlapping grid
Dune:: FieldVector <double ,2> L(1.0);
auto N = Dune:: filledArray <int , 2>(16);
std::bitset <2> periodic (false);
int overlap=0; // overlap 0 as overlap elements are not assembled
Dune::YaspGrid <2> grid(L,N,periodic,overlap);
using GV = Dune::YaspGrid <2>:: LeafGridView;
const GV& gv=grid.leafView ();

// 2. Create correctly constrained grid function space
using FEM = Dune:: PDELab :: Q1LocalFiniteElementMap <Coord ,Real ,dim >;
FEM fem;
using CON = Dune::PDELab::NonoverlappingConformingDirichletConstraints<GV>;
CON con(gv);
using VBE = Dune:: PDELab :: ISTLVectorBackend <>;
using GFS = Dune:: PDELab :: GridFunctionSpace <GV,FEM ,CON ,VBE >;
GFS gfs(gv ,fem,con);
con.compute_ghosts(gfs); // con stores indices of ghost dofs
using Param = ConvectionDiffusionProblem <GV,Real >;
Param param;

51

Nonoverlapping Example Continued

using B = Dune:: PDELab :: BCTypeParam_CD <Param >;
B b(gv,param);
using G = Dune:: PDELab :: DirichletBoundaryCondition_CD <Param >;
G g(gv,param);
// Compute constrained space
using C = typename GFS:: template ConstraintsContainer <Real >:: Type;
C cg;
Dune:: PDELab :: constraints(b,gfs ,cg);

// Make grid operator
using LOP = Dune:: PDELab :: ConvectionDiffusion <Param >;
LOP lop(param ,2);
using MBE = Dune:: PDELab :: ISTLMatrixBackend;
using GO = Dune:: PDELab :: GridOperator <GFS ,GFS ,LOP ,MBE ,double ,double ,double ,C,C,

true >;
GO gos(gfs ,cg ,gfs ,cg ,lop);

52

Nonoverlapping Example Continued

// Compute affine shift
using V = typename GO:: Traits :: Domain;
V x(gfs ,0.0);
Dune:: PDELab :: interpolate(g,gfs ,x);
Dune:: PDELab :: set_nonconstrained_dofs(cg ,0.0,x);

// 3. Choose a linear solver
using LS = Dune::PDELab::ISTLBackend_NOVLP_BCGS_SSORk<GO>;
LS ls(go ,5000 ,3 ,2);
...

53

	Introduction
	Why Parallel Computing?
	Architectures of Parallel Computers
	Message Passing
	Strong Scalability Example

	Domain Decomposition
	Nonoverlapping Domain Decomposition
	Overlapping Domain Decomposition

	Parallel Grids
	Partition Types
	Parallel Grids in Dune
	Iterators on a Parallel Grid
	Grid-Distribution and Load-Balancing

	Communicating Data with Dune
	DUNE Lowlevel Communication API
	Collective Communication
	MPIHelper
	Norms and Scalar-Products on Parallel Grids

	Parallel PDELab
	Parallel Solver Backends

