
DUNE/PDELab Course 2021

Speaker:

Dominic Kempf
Scientific Software Center
Heidelberg University

Simulation Workflow - Build system, meshes and
visualization

1



Goals of this lecture

At the end of this lecture/exercise session you should
I understand the modular structure of Dune.
I have realized that build systems are your friend!
I have an overview of available grid implementations in Dune
I have seen several concepts to construct grids
I be able to visualize PDE solutions in ParaView

2



Contents

Modular structure of Dune

Build system

Simulation Workflow

Available grid implementations

How to create Dune grids

Visualization with VTK

3



Modular structure of Dune

Dune is distributed as a zoo of projects. They fall into the following categories:
I core modules: Basic infrastructure and data types, Grid interface, geometries,

basis functions and linear algebra
I discretization modules: dune-pdelab, dune-fem, dune-fufem, ...
I Grid modules: Additional grid managers
I Extension modules: Mixed bag of additional functionalities
I User modules

Each module...
I is a git repository in itself
I has a file dune.module, which describes its dependencies
I uses the build system from dune-common

4



Contents

Modular structure of Dune

Build system

Simulation Workflow

Available grid implementations

How to create Dune grids

Visualization with VTK

5



Managing modules: Two useful scripts

dune-common ships two tools that define a user interface for handling Dune modules:
I duneproject creates new projects interactively
I dunecontrol executes commands across a stack of modules. This can be used

I Run CMake on all modules
I Build the Dune modules
I Install the Dune stack into global paths
I Run arbitrary commands on all source directories (e.g. git commands)
I Run arbitrary commands on all build directories (e.g. a testing)

The course material was built with dunecontrol as part of the install.sh script.

6



What is CMake anyway?

CMake...
I ... is an open source buildsystem tool developed at KITware.
I ... offers a one-tool-solution to all building tasks, like configuring, building,

linking, testing and packaging.
I ... is a build system generator: It supports a set of backends called “generators”
I ... is portable
I ... is controlled by ONE rather simple language

We typically use the Unix Makefiles generator that generates Makefiles.

7



Where is the build system defined?

Each (sub)directory of the project contains a file CMakeLists.txt. This file
I is written in the CMake language
I is run during configure
I recursively runs CMakeLists.txt files from subdirectories.

8



Some CMake commands everybody should know

I add_subdirectory lets the configure script recurse into a subdirectory. A
CMakeLists.txt file is expected in that directory.

I add_executable adds build rules for a new executable.
I dune_add_test adds a test to the testing suite
I dune_symlink_to_source_files creates links from the source directory into the

build directory

9



An example CMakeLists.txt file

add_executable(mytarget mycode.cc)
dune_symlink_to_source_files(FILES mygrid.grid)

dune_add_test(SOURCE unittest.cc
MPI_RANKS 4)

add_subdirectory(mysubdir)

For a reference of end-user CMake commands, see the build system documentation on
the Dune website (DEMOTIME!).

10



Contents

Modular structure of Dune

Build system

Simulation Workflow

Available grid implementations

How to create Dune grids

Visualization with VTK

11



Simulation workflow

Mesh
Generation

Simulation Executable
Grid, Discretiza-

tion, Linear Algebra

Configuration

VisualizationGrid input files VTK file(s)

ini file

12



Reading configuration through ini files

outputfilename = myfile.vtu
[grid]
lowerleft = -1. -1.
upperright = 1. 1.

Dune style ini files support:
I Key/value pairs separated with a =
I Grouping of keys into sections to arbitrary depth

#include <dune/common/parametertree.hh>
#include <dune/common/parametertreeparser.hh>

Dune:: ParameterTree tree;
Dune:: ParameterTreeParser :: readINITree(filename , tree);

std::cout << "Writing␣to␣" << tree.get <std::string >("outputfilename");

13



Contents

Modular structure of Dune

Build system

Simulation Workflow

Available grid implementations

How to create Dune grids

Visualization with VTK

14



Selecting a grid manager

Dune offers a large variety of grid managers, which differ vastly in their feature set and
their natural strengths. Here are some capabilities of grid implementations:
I structured vs. unstructured
I simplical vs. quadrilateral vs. multi-geometry
I conforming vs. non-conforming
I parallel vs. sequential
I adaptive vs. non-adaptive (also: different refinement algorithms)
I different world dimensions (1, 2, 3, n)
I Surface/manifold grids

Dune allows for implementations of all sorts of grids through one common interface!

15



Selecting a grid manager

structured

PSfrag

conforming non conforming

nested, 1D
red-green, bisektion manifolds

parallel data decomposition

periodic

mixed dimensions

16



A selection of available Implementations of the Dune grid
interface:

I YaspGrid (in dune-grid, structured, parallel, n-dimensional, tensorproduct grid)
I OneDGrid (in dune-grid, adaptive, parallel, 1D)
I GeometryGrid (in dune-grid, meta-grid, applies discrete mesh transformation)
I dune-uggrid (2D/3D, unstructured, parallel, multi-geometry)
I dune-alugrid (2D/3D, unstructured, parallel, simplex/cube)
I dune-multidomaingrid (meta-grid, partition grid into sub-domains)
I dune-subgrid (meta-grid, part of the grid hierarchy as grid in itself)
I opm-grid (3D, corner-point geometries)
I dune-foamgrid (1D/2D in 3D manifold grid)
I dune-prismgrid (meta-grid, extrudes surface mesh)
I dune-polygongrid (polygonal geometries)
I . . .

17



Contents

Modular structure of Dune

Build system

Simulation Workflow

Available grid implementations

How to create Dune grids

Visualization with VTK

18



StructuredGridFactory

There is a utility class, the StructuredGridFactory, which makes it easy to create
structured grids (also for unstructured grid managers). It provides two static functions:

I createCubeGrid creates a grid with cubes with given domain size and number of
elements in each direction.

I createSimplexGrid creates a grid with simplices which are generated by
subdividing the cubes.

These return a unique_ptr to a grid object.
Dune:: FieldVector <GridType ::ctype , dim > lowerleft (0.0);
Dune:: FieldVector <GridType ::ctype , dim > upperright (1.0);
auto N = Dune:: filledArray <dim , unsigned int >(4);

auto grid = Dune:: StructuredGridFactory <GridType >::
createCubeGrid(lowerleft , upperright , N);

19



Structured grids

20



GmshReader

In DUNE there is a mesh reader interface, which can read meshes generated with
Gmsh (available at http://www.geuz.org/gmsh/).
I Can only be used with grid managers that support unstructured grids (however,

gmsh can generate structured grids, which are stored in an unstructured format)
I Supports simplex grids in 2D and 3D
I Gmsh can use geometries from CAD programs
I Gmsh supports a quadratic boundary approximation, which is translated into

boundary segments by the reader.

21

http://www.geuz.org/gmsh/


An easy GmshReader Example

#include <dune/grid/uggrid.hh>
#include <dune/grid/io/file/gmshreader.hh>

typedef Dune::UGGrid <2> GridType;
auto grid = Dune:: GmshReader <GridType >:: read(mshfile );

22



Attaching data to the grid in gmsh

GMSH allows you to define physical entities for cells and boundary segments. The
GmshReader can read those when parsing the msh file and store them in a
std::vector<int>. The user takes responsibility of those data structures.
#include <dune/grid/uggrid.hh>
#include <dune/grid/io/file/gmshreader.hh>

typedef Dune::UGGrid <2> GridType;

std::vector <int > boundaryPhysicalEntities;
std::vector <int > elementPhysicalEntities;

auto grid = Dune:: GmshReader <GridType >::
read(mshfile , boundaryPhysicalEntities , elementPhysicalEntities );

);

23



What is a tensor product grid?

A tensor product grid is a special kind of a non-equidistant structured cube grid. For
each direction i ∈ {0, . . . , d − 1} we define a monotonuous sequence of coordinates:(

x i
j

)Ni

j=0

From those coordinates we define the set of grid vertices V as the tensor product of
those coordinate sequences:

V =
{

(x0
i0 , . . . , xd−1

id−1
)
∣∣ij ∈ {0, . . . , Nj}∀j = 0, . . . , d − 1

}
The resulting grid has

N =
d−1∏
i=1

Ni

cells.
24



Tensorproduct grids in simulations

Tensorgrids combine the performance advantages of a structured grid with an
unstructured grids capability to have different resolutions in different parts of the
domain.

25



TensorGridFactory

YaspGrid provides a natural implementation of a tensor product grid. The coordinate
sequences may be provided manually through std::vector<ctype>.
TensorGridFactory provides convenient methods to fill such coordinate sequences:
I void setStart(int d, ctype value)
I void fillIntervals(int d, int n, ctype h)
I void fillRange(int d, int n, ctype end)
I void geometricFillIntervals(int d, int n, ctype ratio, ctype h0)
I void geometricFillRange(int d, int n, ctype end, ctype h)
I ...

The TensorGridFactory is compatible with all unstructured grid managers.

26



Contents

Modular structure of Dune

Build system

Simulation Workflow

Available grid implementations

How to create Dune grids

Visualization with VTK

27



Visualization

I DUNE uses Paraview as a visualization
program.

I Paraview uses the VTK (Visualization
Toolkit) file format.

I Paraview can be obtained for free at
http://www.paraview.org

28

http://www.paraview.org


VTKWriter

I To use the VTK-writer you have to
#include<dune/grid/io/file/vtk/vtkwriter.hh>

I There are two different ways to use the VTKWriter:
1. Pass the data as a vector to the methods addCellData or addVertexData.

This is especially useful if your scheme already stores the solution in such a
vector, i.e. cell- or vertex-centered Finite-Volume schemes.

2. Define your own VTKFunction and pass it to addCellData or addVertexData as
appropriate.
This is the more general approach and usually done for Finite-Element or DG
schemes.

I After attaching zero or more data fields the data file(s) can be written with the
write method of the VTKWriter.

29



VTK-Export - Elementdata

template <class GridView >
void elementdata(const GridView& gridview)
{

// allocate a vector for the data
std::vector <double > solution(gridview.size (0));

// iterate through all entities of codim 0
for (const auto& e : elements(gridview ))
{

// get global coordinate of cell center
auto global = e.geometry (). center ();
// evaluate function and store value
solution[gridview.indexSet (). index(e)] = exp(global [0]⁎ global [1]);

}

// generate a VTK file
Dune::VTKWriter <GridView > vtkwriter(gridview );
vtkwriter.addCellData(solution , "data");
vtkwriter.write("elementdata", Dune::VTK:: appendedraw );

}

30



VTK-Export - Vertexdata

#include <dune/grid/io/file/vtk/vtkwriter.hh>

template <class GridView , class Functor >
void vertexdata(const GridView& gridview , const Functor& f) {

// allocate a vector for the data
std::vector <double > solution(gridview.size(GridView :: dimension ));

// iterate through all entities of codim dim
for (const auto& v : vertices(gridview ))

{
// evaluate functor and store value
solution[gridview.indexSet (). index(v)] = f(v.geometry (). corner (0));

}

// generate a VTK file
Dune::VTKWriter <GridView > vtkwriter(gridview );
vtkwriter.addVertexData(solution ,"data");
vtkwriter.write("vertexdata",Dune::VTK:: appendedraw );

}

31



Defining a VTKFunction

An output field can also be created by defining a VTKFunction object, e.g.
MyVTKFunction<GridView>.
I It must be derived from Dune::VTKWriter<GridView>::VTKFunction
I It has to provide the following functions:

I the number of components (i.e. whether the plot value is scalar or e.g. a velocity
vector):
virtual int ncomps () const;

I a function returning the value of the plot function for the component comp at
position xi in entity e:
virtual double evaluate(int comp , const Entity& e,

const Dune:: FieldVector <ctype ,Grid::dimension >& xi
) const;

I the name of the plot function to be written in the VTK-file:
virtual std:: string name() const;

32



VTK-Export - VTKFunction I

#include <dune/grid/io/file/vtk/vtkwriter.hh>

template <class GridView > class XY_VTKFunction
: public Dune::VTKWriter <GridView >:: VTKFunction

{
dune_static_assert(GridView :: dimension == 2,

"Illegal␣GridView␣dimension");

public:
typedef typename GridView :: template Codim <0>:: Entity Entity;
typedef Dune:: FieldVector <typename GridView ::ctype ,

GridView ::dimension > CoordType;

virtual int ncomps () const { return 1; }
virtual std:: string name() const { return "xy_elementwise"; }
virtual double evaluate(int comp , const Entity &e,

const CoordType &xi) const
{

auto coord=e.geometry (). global(xi);
return coord [0]⁎ coord [1];

33



VTK-Export - VTKFunction II

}
};

template <class GridView >
void functiondata(const GridView& gridview) {

Dune::VTKWriter <GridView > vtkwriter(gridview );
vtkwriter.addVertexData(

Dune:: make_shared <XY_VTKFunction <GridView > >());
vtkwriter.write("functiondata",Dune::VTK::ascii);

}

34



VTKWriter vs. SubsamplingVTKWriter I

Regular VTKWriter SubsamplingVTKWriter

35



VTKWriter vs. SubsamplingVTKWriter II

To visualize more complex functions (higher order or mesh elements other than
triangles or tetrahedra), a subsampling VTKWriter is needed.
Necessary Changes:
#include <dune/grid/io/file/vtk/subsamplingvtkwriter.hh>
Dune:: SubsamplingVTKWriter <GridView > vtkwriter(gv, Dune:: RefinementIntervals (2));

This creates a subsampling VTKWriter and tells it to generate 2-times subrefined
output. This happens “virtually”, i.e. without modifying the grid.

36


	Modular structure of Dune
	Build system
	Simulation Workflow
	Available grid implementations
	How to create Dune grids
	StructuredGridFactory
	GmshReader
	Tensor Product Grid

	Visualization with VTK

