
DUNE/PDELab Course 2021

Speaker:

Christian Engwer
Applied Mathematics
WWU Münster

The DUNE Grid Interface
An Introduction



DUNE/PDELab Course 2021

The DUNE Grid Interface
(Part 1: Design Principles)

Speaker:

Christian Engwer
Applied Mathematics
WWU Münster

[...] a modular toolbox for solving partial differential equations (PDEs) with
grid-based methods [...]

— http://www.dune-project.org/

http://www.dune-project.org/


DUNE/PDELab Course 2021

The DUNE Grid Interface
(Part 1: Design Principles)

[...] a modular toolbox for solving partial differential equations (PDEs) with
grid-based methods [...]

— http://www.dune-project.org/

http://www.dune-project.org/


Contents

Design Principles

The DUNE Framework

0



Design Principles

Flexibility: Seperation of data structures and algorithms.

Efficiency: Generic programming techniques.

Legacy Code: Reuse existing finite element software.

1



Flexibility
Seperate data structures and algorithms.

I The algorithm determins the data structure to operate on.
I Data structures are hidden under a common interface.
I Algorithms work only on that interface.
I Different implementations of the interface.

Mesh

InterfaceE.g. FE discretization

Algorithm

Structured grid

Unstructured simplicial grid

Unstructured multi−element grid

Incomplete 

Decomposition

Algebraic

Multigrid

Sparse

Matrix−Vector

Interface

Compressed Row Storage (CRS)

Block CRS

Sparse Block CRS

2



Efficiency
Implementation with generic programming techniques.

implementation

algorithm

1. Static Polymorphism
I Duck Typing (see STL)
I Curiously Recurring Template Pattern (Barton

and Nackman)
2. Grid Entity Ranges

I Generic access to different data structures.
3. View Concept

I Access to different partitions of one data set.

3



Contents

Design Principles

The DUNE Framework

3



The DUNE Framework

I Modules
I Code is split into separate modules.
I Applications use only the modules they

need.
I Modules are sorted according to level of

maturaty.
I Everybody can provide her/his own

modules.
I Portability
I Open Development Process
I Free Software Licence

applications

extra grids

localfunctionsistlgrid

core modules

pdelab fem

discretization modules external modules

[Bastian, Blatt, Dedner, Engwer, Klöfkorn,
Kornhuber, Ohlberger, Sander 2008]

4



A brief history. . .

5



DUNE Release 2.7.1

dune-common: foundation classes, infrastructure

dune-geometry: geometric mappings,
quadrature rules visualization

dune-grid: grid interface,
visualization

dune-istl: (Iterative Solver Template Library)
generic sparse matrix/vector classes,
solvers (Krylov methods, AMG, etc.)

dune-localfunctions: generic interface for local
finite element functions. Abstract definition
following Ciarlet. Collection of different
finite elements.

DUNE http://www.dune-project.org/

6

http://www.dune-project.org/


DUN(E)iverse

I modular structure
I write your own DUNE modules
I available under different licenses

I Discretization Modules
I Additional Grid Implementations
I Extension Modules

7



DUN(E)iverse

I modular structure
I write your own DUNE modules
I available under different licenses

I Discretization Modules
dune-pdelab: Discretization module based on dune-localfunctions.

dune-fem: Discretization module based on dune-localfunctions.
dune-functions: A new initiative to provide unified interfaces for functions and function spaces.

I Additional Grid Implementations
I Extension Modules

7



DUN(E)iverse

I modular structure
I write your own DUNE modules
I available under different licenses

I Discretization Modules
dune-pdelab: Discretization module based on dune-localfunctions.

dune-fem: Discretization module based on dune-localfunctions.
dune-functions: A new initiative to provide unified interfaces for functions and function spaces.

I Additional Grid Implementations
I Extension Modules

7



DUN(E)iverse

I modular structure
I write your own DUNE modules
I available under different licenses

I Discretization Modules
I Additional Grid Implementations

dune-grid-glue: allows to compute overlapping and nonoverlapping couplings of Dune grids, as
required for most domain decomposition algorithms.

dune-subgrid: allows you to work on a subset of a given DUNE grid.
dune-foamgrid: non-manifold grids of 1d or 2d entities in higher-dimensional world.
dune-prismgrid: is a tensorgrid of a 2D simplex grid and a 1D grid.

dune-cornerpoint: a cornerpoint mesh, compatible with the grid format of the ECLIPSE reservoir
simulation software.

· · ·
I Extension Modules

7



DUN(E)iverse

I modular structure
I write your own DUNE modules
I available under different licenses

I Discretization Modules
I Additional Grid Implementations
I Extension Modules

dune-python python bindings for centrral DUNE components
dune-typetree classes to organise types in trees

dune-dpg construct optimal Discontinuous-Petrov-Galerkin test spaces
dune-tpmc cut-cell construction using level-sets
· · ·

7



DUN(E)iverse

I modular structure
I write your own DUNE modules
I available under different licenses

I Discretization Modules
I Additional Grid Implementations
I Extension Modules

Goals: allow people to. . .
I get credit for their innovations
I experiment without breaking the core
I develop at different speeds

7



A Package System

dunecontrol
I control of module-interplay
I suggestions & dependencies
I intergrates with cmake & git
I works with Linux, Mac and Mingw

Source: gnome

Note: Dependencies should form a DAG
dunecontrol cmake

configure packages via cmake, include necessary path information
dunecontrol make

build packages in correct order
. . . works without make install

8



A Package System

dunecontrol
I control of module-interplay
I suggestions & dependencies
I intergrates with cmake & git
I works with Linux, Mac and Mingw

Source: gnome
Note: Dependencies should form a DAG

dunecontrol cmake
configure packages via cmake, include necessary path information

dunecontrol make
build packages in correct order

. . . works without make install

8



A Package System

dunecontrol
I control of module-interplay
I suggestions & dependencies
I intergrates with cmake & git
I works with Linux, Mac and Mingw

Source: gnome
Note: Dependencies should form a DAG
dunecontrol cmake

configure packages via cmake, include necessary path information
dunecontrol make

build packages in correct order
. . . works without make install

8



DUNE/PDELab Course 2021

The DUNE Grid Interface
(Part 2: Grid Module)

Speaker:

Christian Engwer
Applied Mathematics
WWU Münster

People think that computer science is the art of geniuses but the actual reality
is the opposite, just many people doing things that build on each other, like a
wall of mini stones.

— Donald E. Knuth



DUNE/PDELab Course 2021

The DUNE Grid Interface
(Part 2: Grid Module)

People think that computer science is the art of geniuses but the actual reality
is the opposite, just many people doing things that build on each other, like a
wall of mini stones.

— Donald E. Knuth



Why Grids?

Weak formulation of boundary value problem:

Find u ∈ U s.t. a(u, v) = l(v) ∀ v ∈ V .

a(u, v) and l(v) are (bi)linear forms, e.g.

a(u, v) =
∫

Ω
∇u · ∇v dx ,

with spatial domain Ω ⊂ Rd .

Grids are necessary for at least three reasons:
1. Piecewise description of the complicated domain Ω
2. Piecewise approximation of functions (by polynomials)
3. Piecewise computation of integrals (by numerical quadrature)

9



Why Grids?

Weak formulation of boundary value problem:

Find u ∈ U s.t. a(u, v) = l(v) ∀ v ∈ V .

a(u, v) and l(v) are (bi)linear forms, e.g.

a(u, v) =
∫

Ω
∇u · ∇v dx ,

with spatial domain Ω ⊂ Rd .

Grids are necessary for at least three reasons:
1. Piecewise description of the complicated domain Ω
2. Piecewise approximation of functions (by polynomials)
3. Piecewise computation of integrals (by numerical quadrature)

9



Numerical Quadrature

I Approximate integral by a weighted sum of function evaluations at sampling
points: ∫

Ω̂
f (x) dx ≈

N∑
i=1

wi f (xi)

with weights wi and sampling points xi , i = 1, . . . ,N.

I Different construction methods for wi and xi
I Typically uses series of polynomials (Legendre, Lagrange, Lobatto, . . . ).
I Exact for polynomial f up to a predefined order.

I Quadrature scheme depends on Ω̂!
I Most schemes only available for simple shapes (triangle, square, tetrahedron, . . . ).
I Quadrature on complicated shapes done by approximating Ω by small volumes of

regular shape.

10



Computational Grid

Ω

11



The DUNE Grid Module

I The DUNE Grid Module is one of the five DUNE Core Modules.
I DUNE wants to provide an interfaces for grid-based methods. Therefore the

concept of a Grid is the central part of DUNE.
I dune-grid provides the interfaces, following the concept of a Grid.
I Its implementation follows the three design principles of DUNE:

Flexibility: Separation of data structures and algorithms.
Efficiency: Generic programming techniques.

Legacy Code: Reuse existing finite element software.

12



Designed to support a wide range of Grids

structured

PSfrag

conforming non conforming

nested, 1D
red-green, bisektion manifolds

parallel data decomposition

periodic

mixed dimensions

13



DUNE Grid Interface1 Features

I Provide abstract interface to grids with:
I Arbitrary dimension embedded in a world dimension,
I multiple element types,
I conforming or nonconforming,
I hierarchical, local refinement,
I arbitrary refinement rules (conforming or nonconforming),
I parallel data distribution and communication,
I dynamic load balancing.

I Reuse existing implementations (ALU, UG, Alberta) + special implementations
(YaspGrid, FoamGrid).

I Meta-Grids built on-top of the interface (GeometryGrid, SubGrid,
MultiDomainGrid)

1Bastian, Blatt, Dedner, Engwer, Klöfkorn, Kornhuber, Ohlberger, Sander: A generic grid interface for parallel and adaptive scientific
computing. Part I: Implementation and tests in DUNE. Computing, 82(2-3):121–138, 2008.

14



Contents

The Grid

Views to the Grid

Entities

Intersections

Attaching Data to the Grid

Further Information and Hands-on

14



The Grid

A formal specification of grids is required to enable an accurate description of the grid
interface.

+ +

Hierarchic Grid

In DUNE a Grid is always a hierarchic grid of
dimension d , existing in a w dimensional space.
The Grid is parametrised by
I the dimension d ,
I the world dimension w
I and the maximum level J .

Within todays excercises we will always assume d = w and we will ignore the hierarchic
structure of the grids we deal with.

15



The Grid

A formal specification of grids is required to enable an accurate description of the grid
interface.

+ +

Hierarchic Grid

In DUNE a Grid is always a hierarchic grid of
dimension d , existing in a w dimensional space.
The Grid is parametrised by
I the dimension d ,
I the world dimension w
I and the maximum level J .

Within todays excercises we will always assume d = w and we will ignore the hierarchic
structure of the grids we deal with.

15



The Grid. . . A Container of Entities. . .

In the DUNE sense a Grid is a container of entities:

I vertices ,
I edges ,
I faces ,
I cells , . . .

In order to do dimension independent programming, we need a dimension independent
naming for different entities.
We distinguish entities according to their codimension.
Entities of codim = c contain subentities of codim = c + 1. This gives a recursive
construction down to codim = d .

16



The Grid. . . A Container of Entities. . .

In the DUNE sense a Grid is a container of entities:

I vertices ,
I edges ,
I faces ,
I cells , . . .

In order to do dimension independent programming, we need a dimension independent
naming for different entities.

We distinguish entities according to their codimension.
Entities of codim = c contain subentities of codim = c + 1. This gives a recursive
construction down to codim = d .

16



The Grid. . . A Container of Entities. . .

In the DUNE sense a Grid is a container of entities:

I vertices (Entity codim = d),
I edges (Entity codim = d − 1),
I faces (Entity codim = 1),
I cells (Entity codim = 0), . . .

In order to do dimension independent programming, we need a dimension independent
naming for different entities.
We distinguish entities according to their codimension.
Entities of codim = c contain subentities of codim = c + 1. This gives a recursive
construction down to codim = d .

16



The DUNE Grid Interface

The DUNE Grid Interface is a collection of classes and methods

#include <dune/grid/yaspgrid.hh>

...

using Grid = Dune::YaspGrid <2>;
Grid grid ({4 ,4} ,{1.0 ,1.0} ,{false ,false });
auto gv = grid.leafGridView ();
for (const auto& cell : elements(gv)) {

// do something
}

We will now get to know the most important classes and see how they interact.

17



The DUNE Grid Interface

The DUNE Grid Interface is a collection of classes and methods

#include <dune/grid/yaspgrid.hh>

...

using Grid = Dune::YaspGrid <2>;
Grid grid ({4 ,4} ,{1.0 ,1.0} ,{false ,false });
auto gv = grid.leafGridView ();
for (const auto& cell : elements(gv)) {

// do something
}

We will now get to know the most important classes and see how they interact.

17



Modifying a Grid

The DUNE Grid interface follows the View-only Concept.

View-Only Concept
I Views offer (read-only) access to the data

I Read-only access to grid entities allow the consequent use of const.
I Access to entities is only through iterators for a certain view.

This allows on-the-fly implementations.
I Data can only be modified in the primary container (the Grid)

Modification Methods:
I Global Refinement
I Local Refinement & Adaption
I Load Balancing

18



Modifying a Grid

The DUNE Grid interface follows the View-only Concept.

View-Only Concept
I Views offer (read-only) access to the data

I Read-only access to grid entities allow the consequent use of const.
I Access to entities is only through iterators for a certain view.

This allows on-the-fly implementations.
I Data can only be modified in the primary container (the Grid)

Modification Methods:
I Global Refinement
I Local Refinement & Adaption
I Load Balancing

18



Modifying a Grid

The DUNE Grid interface follows the View-only Concept.

View-Only Concept
I Views offer (read-only) access to the data

I Read-only access to grid entities allow the consequent use of const.
I Access to entities is only through iterators for a certain view.

This allows on-the-fly implementations.
I Data can only be modified in the primary container (the Grid)

Modification Methods:
I Global Refinement
I Local Refinement & Adaption
I Load Balancing

18



Contents

The Grid

Views to the Grid

Entities

Intersections

Attaching Data to the Grid

Further Information and Hands-on

18



Views to the Grid

A Grid offers two major views:

levelwise:
all entities associated with the same level.

Note: not all levels must cover the whole
domain.

leafwise:
all leaf entities (entities which are not refined).

The leaf view can be seen as the projection of a
levels onto a flat grid. It again covers the whole
domain.

19



Views to the Grid

A Grid offers two major views:

levelwise:
all entities associated with the same level.
Note: not all levels must cover the whole
domain.

leafwise:
all leaf entities (entities which are not refined).

The leaf view can be seen as the projection of a
levels onto a flat grid. It again covers the whole
domain.

19



Views to the Grid

A Grid offers two major views:

levelwise:
all entities associated with the same level.
Note: not all levels must cover the whole
domain.

leafwise:
all leaf entities (entities which are not refined).
The leaf view can be seen as the projection of a
levels onto a flat grid. It again covers the whole
domain.

19



Views to the Grid
Dune::GridView

I The Dune::GridView class consolidates all information depending on the current
View.

I Every Grid must provide
I Grid::LeafGridView and
I Grid::LevelGridView.

I The Grid creates a new view every time you ask it for one, so you need to store a
copy of it.

I Accessing the Views:
I Grid::leafGridView() and
I Grid::levelGridView(int level).

20



Views to the Grid
Dune::GridView

I The Dune::GridView class consolidates all information depending on the current
View.

I Every Grid must provide
I Grid::LeafGridView and
I Grid::LevelGridView.

I The Grid creates a new view every time you ask it for one, so you need to store a
copy of it.

I Accessing the Views:
I Grid::leafGridView() and
I Grid::levelGridView(int level).

20



Views to the Grid
Dune::GridView

I The Dune::GridView class consolidates all information depending on the current
View.

I Every Grid must provide
I Grid::LeafGridView and
I Grid::LevelGridView.

I The Grid creates a new view every time you ask it for one, so you need to store a
copy of it.

I Accessing the Views:
I Grid::leafGridView() and
I Grid::levelGridView(int level).

20



Iterating over grid entities

Typically, most code uses the grid to iterate over some of its entities (e.g. cells) and
perform some calculations with each of those entities.
I GridView supports iteration over all entities of one codimension.
I Iteration uses C++11 range-based for loops:

for (const auto& cell : elements(gv)) {
// do some work with cell

}

I The type in front of cell is important:
I If you create an entity in a range-based for loop, use const auto&.
I In all other cases, use plain auto!

If you do not follow this advice, your program may crash in unpredictable ways.

21



Iteration functions

for (const auto& cell : elements(gv)) {
// do some work with cell

}

You can do similar calls for other entity types:
// Iterates over cells (codim = 0)
for (const auto& c : elements(gv))
// Iterates over vertices (dim = 0)
for (const auto& v : vertices(gv))
// Iterates over facets (codim = 1)
for (const auto& f : facets(gv))
// Iterates over edges (dim = 1)
for (const auto& e : edges(gv))

// Iterates over entities with a given codimension (here: 2)
for (const auto& e : entities(gv,Dune::Codim <2 >{}))
// Iterates over entities with a given dimension (here: 2)
for (const auto& e : entities(gv,Dune::Dim <2 >{}))

22



Iteration functions

for (const auto& cell : elements(gv)) {
// do some work with cell

}

You can do similar calls for other entity types:
// Iterates over cells (codim = 0)
for (const auto& c : elements(gv))
// Iterates over vertices (dim = 0)
for (const auto& v : vertices(gv))
// Iterates over facets (codim = 1)
for (const auto& f : facets(gv))
// Iterates over edges (dim = 1)
for (const auto& e : edges(gv))

// Iterates over entities with a given codimension (here: 2)
for (const auto& e : entities(gv ,Dune::Codim <2 >{}))
// Iterates over entities with a given dimension (here: 2)
for (const auto& e : entities(gv ,Dune::Dim <2 >{}))

22



DUNE/PDELab Course 2021

The DUNE Grid Interface
(Part 2: Grid Module)

Speaker:

Christian Engwer
Applied Mathematics
WWU Münster



Contents

The Grid

Views to the Grid

Entities

Intersections

Attaching Data to the Grid

Further Information and Hands-on

22



Entities

Iterating over a grid view, we get access to the entities.
for (const auto& cell : elements(gv)) {

cell .?????(); // what can we do here?
}

I Entities cannot be modified.
I Entities can be copied and stored

(but copies might be expensive!).
I Entities provide topological and geometrical information.

23



Entities

Iterating over a grid view, we get access to the entities.
for (const auto& cell : elements(gv)) {

cell .?????(); // what can we do here?
}

I Entities cannot be modified.
I Entities can be copied and stored

(but copies might be expensive!).

I Entities provide topological and geometrical information.

23



Entities

Iterating over a grid view, we get access to the entities.
for (const auto& cell : elements(gv)) {

cell .?????(); // what can we do here?
}

I Entities cannot be modified.
I Entities can be copied and stored

(but copies might be expensive!).
I Entities provide topological and geometrical information.

23



Entities

An Entity E provides both topological information
I Type of the entity (triangle, quadrilateral, etc.).
I Relations to other entities.

and geometrical information
I Position of the entity in the grid.

ν

ζ

TE

E

Ω̂

x

y

Mapping from Ω̂ into global coordinates.

Entity E is defined by. . .
I Reference Element Ω̂
I Transformation TE

GridView::Codim<c>::Entity implements the entity concept.

24



Entities

An Entity E provides both topological information
I Type of the entity (triangle, quadrilateral, etc.).
I Relations to other entities.

and geometrical information
I Position of the entity in the grid.

ν

ζ

TE

E

Ω̂

x

y

Mapping from Ω̂ into global coordinates.

Entity E is defined by. . .
I Reference Element Ω̂
I Transformation TE

GridView::Codim<c>::Entity implements the entity concept.

24



Entities

An Entity E provides both topological information
I Type of the entity (triangle, quadrilateral, etc.).
I Relations to other entities.

and geometrical information
I Position of the entity in the grid.

ν

ζ

TE

E

Ω̂

x

y

Mapping from Ω̂ into global coordinates.

Entity E is defined by. . .
I Reference Element Ω̂
I Transformation TE

GridView::Codim<c>::Entity implements the entity concept.

24



Dimension and Codimension

Each entity has a dimension:
I dim(vertex) == 0
I dim(line) == 1

I dim(triangle) == 2
I . . .

When writing dimension-independent code, it is often easier to instead use the
codimension.

The codimension of an entity e is always relative to the dimension of the grid and is
given by:

codim(e) = dim(grid)− dim(e)

I codim(cell) == 0
I codim(face) == 1

I . . .
I codim(vertex) == dim(grid)

25



Dimension and Codimension

Each entity has a dimension:
I dim(vertex) == 0
I dim(line) == 1

I dim(triangle) == 2
I . . .

When writing dimension-independent code, it is often easier to instead use the
codimension.

The codimension of an entity e is always relative to the dimension of the grid and is
given by:

codim(e) = dim(grid)− dim(e)

I codim(cell) == 0
I codim(face) == 1

I . . .
I codim(vertex) == dim(grid)

25



Storing Entities

GridView::Codim<c>::Entity
I Entities can be copied and stored like any normal object.
I Important: There can be multiple entity objects for a single logical grid entity

(because they can be copied)
I Memory expensive, but fast.

GridView::Codim<c>::EntitySeed
I Store minimal information to find an entity again.
I Create like this:

auto entity_seed = entity.seed ();

I The grid can create a new Entity object from an EntitySeed:
auto entity = grid.entity(entity_seed );

I Memory efficient, but run-time overhead to recreate entity.

26



Storing Entities

GridView::Codim<c>::Entity
I Entities can be copied and stored like any normal object.
I Important: There can be multiple entity objects for a single logical grid entity

(because they can be copied)
I Memory expensive, but fast.

GridView::Codim<c>::EntitySeed
I Store minimal information to find an entity again.
I Create like this:

auto entity_seed = entity.seed ();

I The grid can create a new Entity object from an EntitySeed:
auto entity = grid.entity(entity_seed );

I Memory efficient, but run-time overhead to recreate entity.

26



Storing Entities

GridView::Codim<c>::Entity
I Entities can be copied and stored like any normal object.
I Important: There can be multiple entity objects for a single logical grid entity

(because they can be copied)
I Memory expensive, but fast.

GridView::Codim<c>::EntitySeed
I Store minimal information to find an entity again.
I Create like this:

auto entity_seed = entity.seed ();

I The grid can create a new Entity object from an EntitySeed:
auto entity = grid.entity(entity_seed );

I Memory efficient, but run-time overhead to recreate entity.

26



Reference Elements

Dune::GeometryType identifies the type of the entity’s reference element.
Grid::Codim<c>::Entity::type() returns the GeometryType of an entity.

simplex 2D cube 3D prism

27



Geometry Types

GeometryType is a simple identifier for a reference element
I Obtain from entity or geometry object using .type()
I GeometryType for specific reference elements in namespace

Dune::GeometryTypes:
namespace GeometryTypes = Dune:: GeometryTypes;
Dune:: GeometryType gt;

gt = GeometryTypes :: vertex;
gt = GeometryTypes ::line;
gt = GeometryTypes :: triangle;
gt = GeometryTypes :: square;
gt = GeometryTypes :: hexahedron;
gt = GeometryTypes ::cube(dim);
gt = GeometryTypes :: simplex(dim);

I GeometryTypes are cheap, always store and pass around copies (don’t use
references)

28



ReferenceElement (I)

A reference element provides topological and geometrical information about the
embedding of subentities:

simplex 2D cube 3D prism
I Numbering of subentities within the reference element
I Geometrical mappings from reference elements of subentities to the current

reference element
29



ReferenceElement (II)

I Reference elements are templated on the dimension and the coordinate field type
Dune:: ReferenceElement <double ,dim > ref_el = ...;

I The function Dune::referenceElement() will extract the reference element from
most objects that have one:
auto ref_el = Dune:: referenceElement(entity.geometry ());

When using this function, you don’t have to figure out the template parameters.
I ReferenceElements are cheap, always store and pass around copies (don’t use

references)
For more information see the documentation on reference elements2

2https://dune-project.org/doxygen/master/group__GeometryReferenceElements.html

30

https://dune-project.org/doxygen/master/group__GeometryReferenceElements.html


Geometry

Transformation TE
I Maps from one space to an other.
I Main purpose is to map from the reference element to global coordinates.
I Provides transposed inverse of the Jacobian (J−T (TE )).

ν

ζ

TE

E

Ω̂

x

y

31



Geometry Interface (I)

I Obtain Geometry from entity
auto geo = entity.geometry ();

I Convert local coordinate to global coordinate
auto x_global = geo.global(x_local );

I Convert global coordinate to local coordinate
auto x_local = geo.local(x_global );

32



Geometry Interface (II)

I Get center of geometry in global coordinates
auto center = geo.center ();

I Get number of corners of the geometry (e.g. 3 for a triangle)
auto num_corners = geo.corners ();

I Get global coordinates of i-th geometry corner (0 ≤ i <geo.corners())
auto corner_global = geo.corner(i);

33



Geometry Interface (III)

I Get type of reference element
auto geometry_type = geo.type (); // square , triangle , ...

I Find out whether geometry is affine
if (geo.affine ()) {

// do something optimized
}

I Get volume of geometry in global coordinate system
auto volume = geo.volume ();

I Get integration element for a local coordinate (required for numerical integration)
auto mu = geo.integrationElement(x_local );

34



Gradient Transformation

Assume
f : Ω→ R

evaluated on a cell E , i.e. f
(
TE (x̂)

)
.

The gradient of f is then given by

J−TT (x̂)∇̂f
(
TE (x̂)

)
:

auto x_global = geo.global(x_local );
auto J_inv = geo.jacobianInverseTransposed(x_local );
auto tmp = gradient(f)( x_global ); // gradient(f) supplied by user
auto gradient = tmp;
J_inv.mv(tmp ,gradient );

35



Obtaining Quadrature Rules

Recall: Numerical quadrature rules given by∫
Ω̂
f (x) dx ≈

N∑
i=1

wi f (xi)

I dune-geometry provides pre-defined quadrature rules for common geometry types:
int order = ...;
Dune:: GeometryType gt = ...;
auto& qr = Dune:: QuadratureRules <double ,dim >:: rule(gt,order);

I The rule factory is parameterized by the number type (typically use Grid::ctype)
and the dimension of the integration domain

I The rule is exact for polynomials up to the given order
I Use auto& for the type of the rule to avoid expensive copies
I Optional third parameter to select type of rule (Jacobi, Legendre, Lobatto)

36



Using Quadrature Rules

I A QuadratureRule is a range of QuadraturePoint.
I QuadraturePoint provides weight and position:

I QuadraturePoint::weight()
I QuadraturePoint::position()

Example
auto f = some_function_to_integrate (...);
double integral = 0.0;
for (const auto& qp : rule)
{

integral += f(qp.position ()) ⁎ qp.weight ();
}

Attention: When integrating over cells in a grid, keep in mind that the quadrature
point coordinates are local to the reference element and need to be transformed when
integrating an analytical function!

37



Using Quadrature Rules

I A QuadratureRule is a range of QuadraturePoint.
I QuadraturePoint provides weight and position:

I QuadraturePoint::weight()
I QuadraturePoint::position()

Example
auto f = some_function_to_integrate (...);
double integral = 0.0;
for (const auto& qp : rule)
{

integral += f(qp.position ()) ⁎ qp.weight ();
}

Attention: When integrating over cells in a grid, keep in mind that the quadrature
point coordinates are local to the reference element and need to be transformed when
integrating an analytical function!

37



Using Quadrature Rules

I A QuadratureRule is a range of QuadraturePoint.
I QuadraturePoint provides weight and position:

I QuadraturePoint::weight()
I QuadraturePoint::position()

Example
auto f = some_function_to_integrate (...);
double integral = 0.0;
for (const auto& qp : rule)
{

integral += f(qp.position ()) ⁎ qp.weight ();
}

Attention: When integrating over cells in a grid, keep in mind that the quadrature
point coordinates are local to the reference element and need to be transformed when
integrating an analytical function!

37



Quadrature Rule Access in PDELab

Most of the time, you want a quadrature rule for an entity geometry

no need to specify template types

PDELab extension to simplify access:
#include <dune/pdelab/common/quadraturerules.hh>

...

// PDELab quadrature rules wrap dune -geometry rules and are
// cheap to copy , so use "auto" instead of "auto&"
auto quad = Dune:: PDELab :: quadratureRule(geometry ,order);
for (const auto& qp : quad)
{

auto x_local = qp.position ();
auto w = qp.weight ();

}

38



Contents

The Grid

Views to the Grid

Entities

Intersections

Attaching Data to the Grid

Further Information and Hands-on

38



Intersections

I Grids may be non conforming.
I Entities can intersect with neighbours and boundary.
I Represented by Intersection objects.
I Intersections hold topological and geometrical information.
I Intersections depend on the view:
I Note: Intersections are always of codimension 1!

TI
TEi TEo

TI,Êi TI,Êo

I

ÎÊi Êo

Ei

Eo

39



Intersection Interface

I Is this an intersection with the domain boundary?
bool b = intersection.boundary ();

I Is there an entity on the outside of the intersection?
bool b = intersection.neighbor ();

I Get the cell on the inside
auto inside_cell = intersection.inside ();

I Get the cell on the outside
// Do this only if intersection.neighbor () == true
auto outside_cell = intersection.outside ();

40



Intersection: Geometries

I Get mapping from intersection reference element to global
coordinates
auto world_geo =

intersection.geometry ();

I Get mapping from intersection reference element to
reference element of inside cell
auto inside_geo =

intersection.geometryInInside ();

I Get mapping from intersection reference element to
reference element of outside cell
auto outside_geo =

intersection.geometryInOutside ();

TI
TEi TEo

TI,Êi TI,Êo

I

ÎÊi Êo

Ei

Eo

41



Intersection: Normals

I Get unit outer normal for local coordinate.
auto unit_outer_normal =

intersection.unitOuterNormal(x_local );

I Get unit outer normal for center of intersection (good for
affine geometries).
auto unit_outer_normal =

intersection.centerUnitOuterNormal ();

I Get unit outer normal scaled with integration element
(convenient for numerical quadrature).
auto integration_outer_normal =

intersection.integrationOuterNormal(x_local );

TI
TEi TEo

TI,Êi TI,Êo

I

ÎÊi Êo

Ei

Eo

42



Example: Iterating over intersections

In order to iterate over the intersections of a given grid cell with respect to some
GridView, use a range-based for loop with the argument intersections(gv,cell).

The following code iterates over all cells in a GridView and over all intersections of
each cell:
for (const auto& cell : elements(gv))

for (const auto& is : intersections(gv,cell)) {
if (is.boundary ()) {

// handle potential Neumann boundary
}
if (is.neighbor ()) {

// code for Discontinuous Galerkin or Finite Volume
}

}

43



Sequential finite volume solver

Elementwise divergence of a vector field:∫
E
∇ · f (x) dx =

∫
∂E

f · nE ds

Consider the first-order linear PDE

∂tu +∇ · (vu) = 0
with given vector field v(x) and unknown solution u(x , t).
The structureexplicit cell-centered finite volume method reads

ūk+1
E = ūkE −

∆t
|E |

∑
(E ,E ′)∈I(E)

Φ(v · nE , ūkE , ūkE ′)|I(E ,E ′)|

with the numerical flux function Φ chosen as upwind flux here.

keep this in mind for code example 3. . .

44



Sequential finite volume solver

Elementwise divergence of a vector field:∫
E
∇ · f (x) dx =

∫
∂E

f · nE ds

Consider the first-order linear PDE

∂tu +∇ · (vu) = 0
with given vector field v(x) and unknown solution u(x , t).
The structureexplicit cell-centered finite volume method reads

ūk+1
E = ūkE −

∆t
|E |

∑
(E ,E ′)∈I(E)

Φ(v · nE , ūkE , ūkE ′)|I(E ,E ′)|

with the numerical flux function Φ chosen as upwind flux here.

keep this in mind for code example 3. . .

44



Sequential finite volume solver

Elementwise divergence of a vector field:∫
E
∇ · f (x) dx =

∫
∂E

f · nE ds

Consider the first-order linear PDE

∂tu +∇ · (vu) = 0
with given vector field v(x) and unknown solution u(x , t).
The structureexplicit cell-centered finite volume method reads

ūk+1
E = ūkE −

∆t
|E |

∑
(E ,E ′)∈I(E)

Φ(v · nE , ūkE , ūkE ′)|I(E ,E ′)|

with the numerical flux function Φ chosen as upwind flux here.

keep this in mind for code example 3. . .

44



DUNE/PDELab Course 2021

The DUNE Grid Interface
(Part 2: Grid Module)

Speaker:

Christian Engwer
Applied Mathematics
WWU Münster



Contents

The Grid

Views to the Grid

Entities

Intersections

Attaching Data to the Grid

Further Information and Hands-on

44



Attaching Data to the Grid

For computations we need to associate data with grid entities:
I spatially varying parameters,
I entries in the solution vector or the stiffness matrix,
I polynomial degree for p-adaptivity
I status information during assembling
I . . .

. . . meaning we want to

I associate data with subsets of entities.
I Subsets could be “vertices of level l”, “faces of leaf elements”, . . .
I Data should be stored in arrays for efficiency.
I Associate index/id with each entity.

45



Attaching Data to the Grid

For computations we need to associate data with grid entities:
I spatially varying parameters,
I entries in the solution vector or the stiffness matrix,
I polynomial degree for p-adaptivity
I status information during assembling
I . . .

. . . meaning we want to
I associate data with subsets of entities.
I Subsets could be “vertices of level l”, “faces of leaf elements”, . . .
I Data should be stored in arrays for efficiency.
I Associate index/id with each entity.

45



Indices and Ids

Index Set: provides a map m : E → N0, where E is a subset of the entities of a grid
view.
We define the subsets E c

g of a grid view

E c
g = {e ∈ E | e has codimension c and geometry type g}.

I unique within the subsets E c
g .

I consecutive and zero-starting within the subsets E c
g .

I distinct leaf and a level index.

Id Set: provides a map m : E → I, where I is a discrete set of ids.
I unique within E .
I ids need not to be consecutive nor positive.
I persistent with respect to grid modifications.

46



Indices and Ids

Index Set: provides a map m : E → N0, where E is a subset of the entities of a grid
view.
We define the subsets E c

g of a grid view

E c
g = {e ∈ E | e has codimension c and geometry type g}.

I unique within the subsets E c
g .

I consecutive and zero-starting within the subsets E c
g .

I distinct leaf and a level index.

Id Set: provides a map m : E → I, where I is a discrete set of ids.
I unique within E .
I ids need not to be consecutive nor positive.
I persistent with respect to grid modifications.

46



Example: Store the lengths of all edges

The following example demonstrates how to
I query an index set for the number of contained entities of a certain codimension

(so that we can allocate a vector of correct size).
I obtain the index of a grid entity from an index set and use it to store associated

data.
auto& index_set = gv.indexSet ();
// Create a vector with one entry for each edge
auto edge_lengths = std::vector <double >( index_set.size (1));
// Loop over all edges and store their length
for (const auto& edge : edges(gv))

lengths[index_set.index(edge)] = edge.geometry (). volume ();

47



Example: 2D Multi-Element Grid – Indices

Locally refined grid:

48



Example: 2D Multi-Element Grid – Indices

Locally refined grid:

48



Example: 2D Multi-Element Grid – Indices

Locally refined grid:

Indices:

0

1 2

3

4

5

6

7
Consecutive index for vertices

48



Example: 2D Multi-Element Grid – Indices

Locally refined grid:

Indices:

1

1

0
2

3

0

0

1 2

3

4

5

6

7
. . . and cells

48



Example: 2D Multi-Element Grid – Indices

Locally refined grid:

Indices:

1

1

0
2

3

0 0
2

3

Old cell indices on refined grid
48



Example: 2D Multi-Element Grid – Indices

Locally refined grid:

Indices:

1

1

0
2

3

0 0 1
2 3
4

5
6

7

8

0

9

10

Consecutive cell indices on coarse and refined grid
48



Example: 2D Multi-Element Grid – Indices

Locally refined grid:

Ids:

c

e

b
d

f

a g h
i j
k
l
m

n

o

b
d

f

Persistent Ids on coarse and refined grid
48



Mapper

Mappers extend the functionality of Index Sets.

I associate data with an arbitrary subsets E ′ ⊆ E
of the entities E of a grid.

I the data D(E ′) associated with E ′ is stored in an array.
I map from the consecutive, zero-starting index IE ′ = {0, . . . , |E ′| − 1} to the data

set D(E ′).

Mappers can be easily implemented upon the Index Sets and Id Sets.

You will be using the
Dune::MultipleCodimMultipleGeomTypeMapper<GridView>.

49



Mapper

Mappers extend the functionality of Index Sets.

I associate data with an arbitrary subsets E ′ ⊆ E
of the entities E of a grid.

I the data D(E ′) associated with E ′ is stored in an array.
I map from the consecutive, zero-starting index IE ′ = {0, . . . , |E ′| − 1} to the data

set D(E ′).

Mappers can be easily implemented upon the Index Sets and Id Sets.

You will be using the
Dune::MultipleCodimMultipleGeomTypeMapper<GridView>.

49



Example: Mapper (I)

#include <dune/grid/common/mcmgmapper.hh>
...

typedef Dune:: SomeGrid :: LeafGridView GridView;
...

/⁎ create a mapper ⁎/
// Layout description
Dune:: MCMGLayout layout =

[]( Dune:: GeometryType gt, int griddim) {
return gt.dim() == griddim;

};

// mapper for elements (codim =0) on leaf
using Mapper =

Dune:: MultipleCodimMultipleGeomTypeMapper <GridView >;

50



Example: Mapper (II)

// mapper for elements (codim =0) on leaf
using Mapper =

Dune:: MultipleCodimMultipleGeomTypeMapper <GridView >;
Mapper mapper(gridview ,layout );

/⁎ setup sparsity pattern ⁎/
// iterate over the leaf
for (const auto& entity : elements(gridview ))
{

int index = mapper.index(entity );
// iterate over all intersections of this cell
for (const auto& i : intersections(gridview ,entity ))
{

// neighbor intersection
if (i.neighbor ()) {

int nindex = mapper.index(i.outside ());
matrix[index]. insert(nindex );

}
}

}

51



Contents

The Grid

Views to the Grid

Entities

Intersections

Attaching Data to the Grid

Further Information and Hands-on

51



Further Reading
What we didn’t discuss. . .

I grid creation and I/O

2nd lecture today.

I grid adaptation

I parallelization, load balancing

I further specialized methods (e.g. related to grid hierarchy)

special topics lectures on thursday and friday

52



Further Reading
What we didn’t discuss. . .

I grid creation and I/O

2nd lecture today.

I grid adaptation

I parallelization, load balancing

I further specialized methods (e.g. related to grid hierarchy)

special topics lectures on thursday and friday

52



Further Reading
What we didn’t discuss. . .

I grid creation and I/O

2nd lecture today.

I grid adaptation

I parallelization, load balancing

I further specialized methods (e.g. related to grid hierarchy)

special topics lectures on thursday and friday

52



Further Reading
What we didn’t discuss. . .

I grid creation and I/O

2nd lecture today.

I grid adaptation

I parallelization, load balancing

I further specialized methods (e.g. related to grid hierarchy)

special topics lectures on thursday and friday

52



Further Reading

Doxygen class documentation
I Stable DUNE Code modules:

https://dune-project.org/doxygen/2.7.1

I Overview of different components:
https://dune-project.org/doxygen/2.7.1/modules.html

I PDELab class documentation:
https://dune-project.org/doxygen/pdelab/master/

I PDELab recipes:
https:
//dune-project.org/doxygen/pdelab/master/group__pdelab__recipes.html

53

https://dune-project.org/doxygen/2.7.1
https://dune-project.org/doxygen/2.7.1/modules.html
https://dune-project.org/doxygen/pdelab/master/
https://dune-project.org/doxygen/pdelab/master/group__pdelab__recipes.html
https://dune-project.org/doxygen/pdelab/master/group__pdelab__recipes.html


Further Reading
Literature

Cite when using the DUNE grid interface. . .

P. Bastian, M. Blatt, Markus, A. Dedner, N. Dreier, C. Engwer, R. Fritze, C. Gräser, C.
Grüninger, D. Kempf, R. Klöfkorn, M. Ohlberger, O. Sander.
The DUNE framework: basic concepts and recent developments.
Computers & Mathematics with Applications, 81, 2021, pp. 75–112.

P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, M. Ohlberger, O. Sander.
A Generic Grid Interface for Parallel and Adaptive Scientific Computing. Part I: Abstract
Framework.
Computing, 82(2–3), 2008, pp. 103–119.

P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, M. Ohlberger, O. Sander.
A Generic Grid Interface for Parallel and Adaptive Scientific Computing. Part II:
Implementation and Tests in DUNE.
Computing, 82(2–3), 2008, pp. 121–138.

54



First steps with the DUNE grid interface

Files involved are:
1) First example: grid-exercise1.cc

I Iterate over the grid
I Add evaluation of different geometry information

2) Second example: integration.cc

I Evaluate an integral over the domain
I Add loop over all elements and local integration

3) Third example: Simulate a simple transport problem using a Finite Volume
discertization
I finitevolume.cc

I Main code to run a simple finite volume discretization (no changes required)

I fv.hh

I Add evaluation of face terms inside the element loop

Now lets go to the code . . .

55



First steps with the DUNE grid interface

Files involved are:
1) First example: grid-exercise1.cc

I Iterate over the grid
I Add evaluation of different geometry information

2) Second example: integration.cc
I Evaluate an integral over the domain
I Add loop over all elements and local integration

3) Third example: Simulate a simple transport problem using a Finite Volume
discertization
I finitevolume.cc

I Main code to run a simple finite volume discretization (no changes required)

I fv.hh

I Add evaluation of face terms inside the element loop

Now lets go to the code . . .

55



First steps with the DUNE grid interface

Files involved are:
1) First example: grid-exercise1.cc

I Iterate over the grid
I Add evaluation of different geometry information

2) Second example: integration.cc
I Evaluate an integral over the domain
I Add loop over all elements and local integration

3) Third example: Simulate a simple transport problem using a Finite Volume
discertization
I finitevolume.cc

I Main code to run a simple finite volume discretization (no changes required)
I fv.hh

I Add evaluation of face terms inside the element loop

Now lets go to the code . . .

55



First steps with the DUNE grid interface

Files involved are:
1) First example: grid-exercise1.cc

I Iterate over the grid
I Add evaluation of different geometry information

2) Second example: integration.cc
I Evaluate an integral over the domain
I Add loop over all elements and local integration

3) Third example: Simulate a simple transport problem using a Finite Volume
discertization
I finitevolume.cc

I Main code to run a simple finite volume discretization (no changes required)

I fv.hh

I Add evaluation of face terms inside the element loop

Now lets go to the code . . .

55


	Design Principles
	Design Principles
	The DUNE Framework

	Grid Module
	The Grid
	Views to the Grid
	Entities
	Reference Elements
	Geometry

	Intersections
	Attaching Data to the Grid
	Further Information and Hands-on


