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Design Principles

Flexibility: Seperation of data structures and algorithms.

Efficiency: Generic programming techniques.

Legacy Code: Reuse existing finite element software.
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Flexibility
Seperate data structures and algorithms.

I The algorithm determins the data structure to operate on.
I Data structures are hidden under a common interface.
I Algorithms work only on that interface.
I Different implementations of the interface.

Mesh

InterfaceE.g. FE discretization

Algorithm

Structured grid

Unstructured simplicial grid

Unstructured multi−element grid

Incomplete 

Decomposition

Algebraic

Multigrid

Sparse

Matrix−Vector

Interface

Compressed Row Storage (CRS)

Block CRS

Sparse Block CRS
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Efficiency
Implementation with generic programming techniques.

implementation

algorithm

1. Static Polymorphism
I Duck Typing (see STL)
I Curiously Recurring Template Pattern (Barton

and Nackman)
2. Grid Entity Ranges

I Generic access to different data structures.
3. View Concept

I Access to different partitions of one data set.
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The DUNE Framework

I Modules
I Code is split into separate modules.
I Applications use only the modules they

need.
I Modules are sorted according to level of

maturaty.
I Everybody can provide her/his own

modules.
I Portability
I Open Development Process
I Free Software Licence

applications

extra grids

localfunctionsistlgrid

core modules

pdelab fem

discretization modules external modules

[Bastian, Blatt, Dedner, Engwer, Klöfkorn,
Kornhuber, Ohlberger, Sander 2008]
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A brief history. . .
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DUNE Release 2.7.1

dune-common: foundation classes, infrastructure

dune-geometry: geometric mappings,
quadrature rules visualization

dune-grid: grid interface,
visualization

dune-istl: (Iterative Solver Template Library)
generic sparse matrix/vector classes,
solvers (Krylov methods, AMG, etc.)

dune-localfunctions: generic interface for local
finite element functions. Abstract definition
following Ciarlet. Collection of different
finite elements.

DUNE http://www.dune-project.org/
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DUN(E)iverse

I modular structure
I write your own DUNE modules
I available under different licenses

I Discretization Modules
I Additional Grid Implementations
I Extension Modules
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DUN(E)iverse

I modular structure
I write your own DUNE modules
I available under different licenses

I Discretization Modules
I Additional Grid Implementations

dune-grid-glue: allows to compute overlapping and nonoverlapping couplings of Dune grids, as
required for most domain decomposition algorithms.

dune-subgrid: allows you to work on a subset of a given DUNE grid.
dune-foamgrid: non-manifold grids of 1d or 2d entities in higher-dimensional world.
dune-prismgrid: is a tensorgrid of a 2D simplex grid and a 1D grid.

dune-cornerpoint: a cornerpoint mesh, compatible with the grid format of the ECLIPSE reservoir
simulation software.

· · ·
I Extension Modules

7



DUN(E)iverse

I modular structure
I write your own DUNE modules
I available under different licenses

I Discretization Modules
I Additional Grid Implementations
I Extension Modules

dune-python python bindings for centrral DUNE components
dune-typetree classes to organise types in trees

dune-dpg construct optimal Discontinuous-Petrov-Galerkin test spaces
dune-tpmc cut-cell construction using level-sets
· · ·
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DUN(E)iverse

I modular structure
I write your own DUNE modules
I available under different licenses

I Discretization Modules
I Additional Grid Implementations
I Extension Modules

Goals: allow people to. . .
I get credit for their innovations
I experiment without breaking the core
I develop at different speeds
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A Package System

dunecontrol
I control of module-interplay
I suggestions & dependencies
I intergrates with cmake & git
I works with Linux, Mac and Mingw

Source: gnome

Note: Dependencies should form a DAG
dunecontrol cmake

configure packages via cmake, include necessary path information
dunecontrol make

build packages in correct order
. . . works without make install
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Why Grids?

Weak formulation of boundary value problem:

Find u ∈ U s.t. a(u, v) = l(v) ∀ v ∈ V .

a(u, v) and l(v) are (bi)linear forms, e.g.

a(u, v) =
∫

Ω
∇u · ∇v dx ,

with spatial domain Ω ⊂ Rd .

Grids are necessary for at least three reasons:
1. Piecewise description of the complicated domain Ω
2. Piecewise approximation of functions (by polynomials)
3. Piecewise computation of integrals (by numerical quadrature)
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Numerical Quadrature

I Approximate integral by a weighted sum of function evaluations at sampling
points: ∫

Ω̂
f (x) dx ≈

N∑
i=1

wi f (xi)

with weights wi and sampling points xi , i = 1, . . . ,N.

I Different construction methods for wi and xi
I Typically uses series of polynomials (Legendre, Lagrange, Lobatto, . . . ).
I Exact for polynomial f up to a predefined order.

I Quadrature scheme depends on Ω̂!
I Most schemes only available for simple shapes (triangle, square, tetrahedron, . . . ).
I Quadrature on complicated shapes done by approximating Ω by small volumes of

regular shape.
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Computational Grid

Ω
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The DUNE Grid Module

I The DUNE Grid Module is one of the five DUNE Core Modules.
I DUNE wants to provide an interfaces for grid-based methods. Therefore the

concept of a Grid is the central part of DUNE.
I dune-grid provides the interfaces, following the concept of a Grid.
I Its implementation follows the three design principles of DUNE:

Flexibility: Separation of data structures and algorithms.
Efficiency: Generic programming techniques.

Legacy Code: Reuse existing finite element software.
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Designed to support a wide range of Grids

structured

PSfrag

conforming non conforming

nested, 1D
red-green, bisektion manifolds

parallel data decomposition

periodic

mixed dimensions
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DUNE Grid Interface1 Features

I Provide abstract interface to grids with:
I Arbitrary dimension embedded in a world dimension,
I multiple element types,
I conforming or nonconforming,
I hierarchical, local refinement,
I arbitrary refinement rules (conforming or nonconforming),
I parallel data distribution and communication,
I dynamic load balancing.

I Reuse existing implementations (ALU, UG, Alberta) + special implementations
(YaspGrid, FoamGrid).

I Meta-Grids built on-top of the interface (GeometryGrid, SubGrid,
MultiDomainGrid)

1Bastian, Blatt, Dedner, Engwer, Klöfkorn, Kornhuber, Ohlberger, Sander: A generic grid interface for parallel and adaptive scientific
computing. Part I: Implementation and tests in DUNE. Computing, 82(2-3):121–138, 2008.
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The Grid

A formal specification of grids is required to enable an accurate description of the grid
interface.

+ +

Hierarchic Grid

In DUNE a Grid is always a hierarchic grid of
dimension d , existing in a w dimensional space.
The Grid is parametrised by
I the dimension d ,
I the world dimension w
I and the maximum level J .

Within todays excercises we will always assume d = w and we will ignore the hierarchic
structure of the grids we deal with.
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The Grid. . . A Container of Entities. . .

In the DUNE sense a Grid is a container of entities:

I vertices ,
I edges ,
I faces ,
I cells , . . .

In order to do dimension independent programming, we need a dimension independent
naming for different entities.
We distinguish entities according to their codimension.
Entities of codim = c contain subentities of codim = c + 1. This gives a recursive
construction down to codim = d .
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The Grid. . . A Container of Entities. . .

In the DUNE sense a Grid is a container of entities:

I vertices (Entity codim = d),
I edges (Entity codim = d − 1),
I faces (Entity codim = 1),
I cells (Entity codim = 0), . . .

In order to do dimension independent programming, we need a dimension independent
naming for different entities.
We distinguish entities according to their codimension.
Entities of codim = c contain subentities of codim = c + 1. This gives a recursive
construction down to codim = d .
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The DUNE Grid Interface

The DUNE Grid Interface is a collection of classes and methods

#include <dune/grid/yaspgrid.hh>

...

using Grid = Dune::YaspGrid <2>;
Grid grid ({4 ,4} ,{1.0 ,1.0} ,{false ,false });
auto gv = grid.leafGridView ();
for (const auto& cell : elements(gv)) {

// do something
}

We will now get to know the most important classes and see how they interact.
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Modifying a Grid

The DUNE Grid interface follows the View-only Concept.

View-Only Concept
I Views offer (read-only) access to the data

I Read-only access to grid entities allow the consequent use of const.
I Access to entities is only through iterators for a certain view.

This allows on-the-fly implementations.
I Data can only be modified in the primary container (the Grid)

Modification Methods:
I Global Refinement
I Local Refinement & Adaption
I Load Balancing
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Views to the Grid

A Grid offers two major views:

levelwise:
all entities associated with the same level.

Note: not all levels must cover the whole
domain.

leafwise:
all leaf entities (entities which are not refined).

The leaf view can be seen as the projection of a
levels onto a flat grid. It again covers the whole
domain.
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Views to the Grid
Dune::GridView

I The Dune::GridView class consolidates all information depending on the current
View.

I Every Grid must provide
I Grid::LeafGridView and
I Grid::LevelGridView.

I The Grid creates a new view every time you ask it for one, so you need to store a
copy of it.

I Accessing the Views:
I Grid::leafGridView() and
I Grid::levelGridView(int level).
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Iterating over grid entities

Typically, most code uses the grid to iterate over some of its entities (e.g. cells) and
perform some calculations with each of those entities.
I GridView supports iteration over all entities of one codimension.
I Iteration uses C++11 range-based for loops:

for (const auto& cell : elements(gv)) {
// do some work with cell

}

I The type in front of cell is important:
I If you create an entity in a range-based for loop, use const auto&.
I In all other cases, use plain auto!

If you do not follow this advice, your program may crash in unpredictable ways.
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Iteration functions

for (const auto& cell : elements(gv)) {
// do some work with cell

}

You can do similar calls for other entity types:
// Iterates over cells (codim = 0)
for (const auto& c : elements(gv))
// Iterates over vertices (dim = 0)
for (const auto& v : vertices(gv))
// Iterates over facets (codim = 1)
for (const auto& f : facets(gv))
// Iterates over edges (dim = 1)
for (const auto& e : edges(gv))

// Iterates over entities with a given codimension (here: 2)
for (const auto& e : entities(gv,Dune::Codim <2 >{}))
// Iterates over entities with a given dimension (here: 2)
for (const auto& e : entities(gv,Dune::Dim <2 >{}))

22



Iteration functions

for (const auto& cell : elements(gv)) {
// do some work with cell

}

You can do similar calls for other entity types:
// Iterates over cells (codim = 0)
for (const auto& c : elements(gv))
// Iterates over vertices (dim = 0)
for (const auto& v : vertices(gv))
// Iterates over facets (codim = 1)
for (const auto& f : facets(gv))
// Iterates over edges (dim = 1)
for (const auto& e : edges(gv))

// Iterates over entities with a given codimension (here: 2)
for (const auto& e : entities(gv ,Dune::Codim <2 >{}))
// Iterates over entities with a given dimension (here: 2)
for (const auto& e : entities(gv ,Dune::Dim <2 >{}))

22



DUNE/PDELab Course 2021

The DUNE Grid Interface
(Part 2: Grid Module)

Speaker:

Christian Engwer
Applied Mathematics
WWU Münster



Contents

The Grid

Views to the Grid

Entities

Intersections

Attaching Data to the Grid

Further Information and Hands-on

22



Entities

Iterating over a grid view, we get access to the entities.
for (const auto& cell : elements(gv)) {

cell .?????(); // what can we do here?
}

I Entities cannot be modified.
I Entities can be copied and stored

(but copies might be expensive!).
I Entities provide topological and geometrical information.
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Entities

An Entity E provides both topological information
I Type of the entity (triangle, quadrilateral, etc.).
I Relations to other entities.

and geometrical information
I Position of the entity in the grid.

ν

ζ

TE

E

Ω̂

x

y

Mapping from Ω̂ into global coordinates.

Entity E is defined by. . .
I Reference Element Ω̂
I Transformation TE

GridView::Codim<c>::Entity implements the entity concept.
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Dimension and Codimension

Each entity has a dimension:
I dim(vertex) == 0
I dim(line) == 1

I dim(triangle) == 2
I . . .

When writing dimension-independent code, it is often easier to instead use the
codimension.

The codimension of an entity e is always relative to the dimension of the grid and is
given by:

codim(e) = dim(grid)− dim(e)

I codim(cell) == 0
I codim(face) == 1

I . . .
I codim(vertex) == dim(grid)
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Storing Entities

GridView::Codim<c>::Entity
I Entities can be copied and stored like any normal object.
I Important: There can be multiple entity objects for a single logical grid entity

(because they can be copied)
I Memory expensive, but fast.

GridView::Codim<c>::EntitySeed
I Store minimal information to find an entity again.
I Create like this:

auto entity_seed = entity.seed ();

I The grid can create a new Entity object from an EntitySeed:
auto entity = grid.entity(entity_seed );

I Memory efficient, but run-time overhead to recreate entity.
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Reference Elements

Dune::GeometryType identifies the type of the entity’s reference element.
Grid::Codim<c>::Entity::type() returns the GeometryType of an entity.

simplex 2D cube 3D prism

27



Geometry Types

GeometryType is a simple identifier for a reference element
I Obtain from entity or geometry object using .type()
I GeometryType for specific reference elements in namespace

Dune::GeometryTypes:
namespace GeometryTypes = Dune:: GeometryTypes;
Dune:: GeometryType gt;

gt = GeometryTypes :: vertex;
gt = GeometryTypes ::line;
gt = GeometryTypes :: triangle;
gt = GeometryTypes :: square;
gt = GeometryTypes :: hexahedron;
gt = GeometryTypes ::cube(dim);
gt = GeometryTypes :: simplex(dim);

I GeometryTypes are cheap, always store and pass around copies (don’t use
references)

28



ReferenceElement (I)

A reference element provides topological and geometrical information about the
embedding of subentities:

simplex 2D cube 3D prism
I Numbering of subentities within the reference element
I Geometrical mappings from reference elements of subentities to the current

reference element
29



ReferenceElement (II)

I Reference elements are templated on the dimension and the coordinate field type
Dune:: ReferenceElement <double ,dim > ref_el = ...;

I The function Dune::referenceElement() will extract the reference element from
most objects that have one:
auto ref_el = Dune:: referenceElement(entity.geometry ());

When using this function, you don’t have to figure out the template parameters.
I ReferenceElements are cheap, always store and pass around copies (don’t use

references)
For more information see the documentation on reference elements2

2https://dune-project.org/doxygen/master/group__GeometryReferenceElements.html
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Geometry

Transformation TE
I Maps from one space to an other.
I Main purpose is to map from the reference element to global coordinates.
I Provides transposed inverse of the Jacobian (J−T (TE )).

ν

ζ

TE

E

Ω̂

x

y
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Geometry Interface (I)

I Obtain Geometry from entity
auto geo = entity.geometry ();

I Convert local coordinate to global coordinate
auto x_global = geo.global(x_local );

I Convert global coordinate to local coordinate
auto x_local = geo.local(x_global );
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Geometry Interface (II)

I Get center of geometry in global coordinates
auto center = geo.center ();

I Get number of corners of the geometry (e.g. 3 for a triangle)
auto num_corners = geo.corners ();

I Get global coordinates of i-th geometry corner (0 ≤ i <geo.corners())
auto corner_global = geo.corner(i);
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Geometry Interface (III)

I Get type of reference element
auto geometry_type = geo.type (); // square , triangle , ...

I Find out whether geometry is affine
if (geo.affine ()) {

// do something optimized
}

I Get volume of geometry in global coordinate system
auto volume = geo.volume ();

I Get integration element for a local coordinate (required for numerical integration)
auto mu = geo.integrationElement(x_local );
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Gradient Transformation

Assume
f : Ω→ R

evaluated on a cell E , i.e. f
(
TE (x̂)

)
.

The gradient of f is then given by

J−TT (x̂)∇̂f
(
TE (x̂)

)
:

auto x_global = geo.global(x_local );
auto J_inv = geo.jacobianInverseTransposed(x_local );
auto tmp = gradient(f)( x_global ); // gradient(f) supplied by user
auto gradient = tmp;
J_inv.mv(tmp ,gradient );
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Obtaining Quadrature Rules

Recall: Numerical quadrature rules given by∫
Ω̂
f (x) dx ≈

N∑
i=1

wi f (xi)

I dune-geometry provides pre-defined quadrature rules for common geometry types:
int order = ...;
Dune:: GeometryType gt = ...;
auto& qr = Dune:: QuadratureRules <double ,dim >:: rule(gt,order);

I The rule factory is parameterized by the number type (typically use Grid::ctype)
and the dimension of the integration domain

I The rule is exact for polynomials up to the given order
I Use auto& for the type of the rule to avoid expensive copies
I Optional third parameter to select type of rule (Jacobi, Legendre, Lobatto)
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Using Quadrature Rules

I A QuadratureRule is a range of QuadraturePoint.
I QuadraturePoint provides weight and position:

I QuadraturePoint::weight()
I QuadraturePoint::position()

Example
auto f = some_function_to_integrate (...);
double integral = 0.0;
for (const auto& qp : rule)
{

integral += f(qp.position ()) ⁎ qp.weight ();
}

Attention: When integrating over cells in a grid, keep in mind that the quadrature
point coordinates are local to the reference element and need to be transformed when
integrating an analytical function!
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Quadrature Rule Access in PDELab

Most of the time, you want a quadrature rule for an entity geometry

no need to specify template types

PDELab extension to simplify access:
#include <dune/pdelab/common/quadraturerules.hh>

...

// PDELab quadrature rules wrap dune -geometry rules and are
// cheap to copy , so use "auto" instead of "auto&"
auto quad = Dune:: PDELab :: quadratureRule(geometry ,order);
for (const auto& qp : quad)
{

auto x_local = qp.position ();
auto w = qp.weight ();

}
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Intersections

I Grids may be non conforming.
I Entities can intersect with neighbours and boundary.
I Represented by Intersection objects.
I Intersections hold topological and geometrical information.
I Intersections depend on the view:
I Note: Intersections are always of codimension 1!

TI
TEi TEo

TI,Êi TI,Êo

I

ÎÊi Êo

Ei

Eo
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Intersection Interface

I Is this an intersection with the domain boundary?
bool b = intersection.boundary ();

I Is there an entity on the outside of the intersection?
bool b = intersection.neighbor ();

I Get the cell on the inside
auto inside_cell = intersection.inside ();

I Get the cell on the outside
// Do this only if intersection.neighbor () == true
auto outside_cell = intersection.outside ();
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Intersection: Geometries

I Get mapping from intersection reference element to global
coordinates
auto world_geo =

intersection.geometry ();

I Get mapping from intersection reference element to
reference element of inside cell
auto inside_geo =

intersection.geometryInInside ();

I Get mapping from intersection reference element to
reference element of outside cell
auto outside_geo =

intersection.geometryInOutside ();

TI
TEi TEo

TI,Êi TI,Êo

I

ÎÊi Êo

Ei

Eo
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Intersection: Normals

I Get unit outer normal for local coordinate.
auto unit_outer_normal =

intersection.unitOuterNormal(x_local );

I Get unit outer normal for center of intersection (good for
affine geometries).
auto unit_outer_normal =

intersection.centerUnitOuterNormal ();

I Get unit outer normal scaled with integration element
(convenient for numerical quadrature).
auto integration_outer_normal =

intersection.integrationOuterNormal(x_local );

TI
TEi TEo

TI,Êi TI,Êo

I

ÎÊi Êo

Ei

Eo
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Example: Iterating over intersections

In order to iterate over the intersections of a given grid cell with respect to some
GridView, use a range-based for loop with the argument intersections(gv,cell).

The following code iterates over all cells in a GridView and over all intersections of
each cell:
for (const auto& cell : elements(gv))

for (const auto& is : intersections(gv,cell)) {
if (is.boundary ()) {

// handle potential Neumann boundary
}
if (is.neighbor ()) {

// code for Discontinuous Galerkin or Finite Volume
}

}
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Sequential finite volume solver

Elementwise divergence of a vector field:∫
E
∇ · f (x) dx =

∫
∂E

f · nE ds

Consider the first-order linear PDE

∂tu +∇ · (vu) = 0
with given vector field v(x) and unknown solution u(x , t).
The structureexplicit cell-centered finite volume method reads

ūk+1
E = ūkE −

∆t
|E |

∑
(E ,E ′)∈I(E)

Φ(v · nE , ūkE , ūkE ′)|I(E ,E ′)|

with the numerical flux function Φ chosen as upwind flux here.

keep this in mind for code example 3. . .
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Attaching Data to the Grid

For computations we need to associate data with grid entities:
I spatially varying parameters,
I entries in the solution vector or the stiffness matrix,
I polynomial degree for p-adaptivity
I status information during assembling
I . . .

. . . meaning we want to

I associate data with subsets of entities.
I Subsets could be “vertices of level l”, “faces of leaf elements”, . . .
I Data should be stored in arrays for efficiency.
I Associate index/id with each entity.
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Indices and Ids

Index Set: provides a map m : E → N0, where E is a subset of the entities of a grid
view.
We define the subsets E c

g of a grid view

E c
g = {e ∈ E | e has codimension c and geometry type g}.

I unique within the subsets E c
g .

I consecutive and zero-starting within the subsets E c
g .

I distinct leaf and a level index.

Id Set: provides a map m : E → I, where I is a discrete set of ids.
I unique within E .
I ids need not to be consecutive nor positive.
I persistent with respect to grid modifications.
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Example: Store the lengths of all edges

The following example demonstrates how to
I query an index set for the number of contained entities of a certain codimension

(so that we can allocate a vector of correct size).
I obtain the index of a grid entity from an index set and use it to store associated

data.
auto& index_set = gv.indexSet ();
// Create a vector with one entry for each edge
auto edge_lengths = std::vector <double >( index_set.size (1));
// Loop over all edges and store their length
for (const auto& edge : edges(gv))

lengths[index_set.index(edge)] = edge.geometry (). volume ();
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Example: 2D Multi-Element Grid – Indices

Locally refined grid:
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Example: 2D Multi-Element Grid – Indices

Locally refined grid:

Indices:
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7
Consecutive index for vertices
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Example: 2D Multi-Element Grid – Indices

Locally refined grid:

Indices:
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Example: 2D Multi-Element Grid – Indices

Locally refined grid:

Indices:

1

1

0
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Old cell indices on refined grid
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Locally refined grid:
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Example: 2D Multi-Element Grid – Indices

Locally refined grid:

Ids:

c

e

b
d

f

a g h
i j
k
l
m

n

o

b
d

f

Persistent Ids on coarse and refined grid
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Mapper

Mappers extend the functionality of Index Sets.

I associate data with an arbitrary subsets E ′ ⊆ E
of the entities E of a grid.

I the data D(E ′) associated with E ′ is stored in an array.
I map from the consecutive, zero-starting index IE ′ = {0, . . . , |E ′| − 1} to the data

set D(E ′).

Mappers can be easily implemented upon the Index Sets and Id Sets.

You will be using the
Dune::MultipleCodimMultipleGeomTypeMapper<GridView>.
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Example: Mapper (I)

#include <dune/grid/common/mcmgmapper.hh>
...

typedef Dune:: SomeGrid :: LeafGridView GridView;
...

/⁎ create a mapper ⁎/
// Layout description
Dune:: MCMGLayout layout =

[]( Dune:: GeometryType gt, int griddim) {
return gt.dim() == griddim;

};

// mapper for elements (codim =0) on leaf
using Mapper =

Dune:: MultipleCodimMultipleGeomTypeMapper <GridView >;
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Example: Mapper (II)

// mapper for elements (codim =0) on leaf
using Mapper =

Dune:: MultipleCodimMultipleGeomTypeMapper <GridView >;
Mapper mapper(gridview ,layout );

/⁎ setup sparsity pattern ⁎/
// iterate over the leaf
for (const auto& entity : elements(gridview ))
{

int index = mapper.index(entity );
// iterate over all intersections of this cell
for (const auto& i : intersections(gridview ,entity ))
{

// neighbor intersection
if (i.neighbor ()) {

int nindex = mapper.index(i.outside ());
matrix[index]. insert(nindex );

}
}

}

51



Contents

The Grid

Views to the Grid

Entities

Intersections

Attaching Data to the Grid

Further Information and Hands-on

51



Further Reading
What we didn’t discuss. . .

I grid creation and I/O

2nd lecture today.

I grid adaptation

I parallelization, load balancing

I further specialized methods (e.g. related to grid hierarchy)

special topics lectures on thursday and friday
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Further Reading

Doxygen class documentation
I Stable DUNE Code modules:

https://dune-project.org/doxygen/2.7.1

I Overview of different components:
https://dune-project.org/doxygen/2.7.1/modules.html

I PDELab class documentation:
https://dune-project.org/doxygen/pdelab/master/

I PDELab recipes:
https:
//dune-project.org/doxygen/pdelab/master/group__pdelab__recipes.html
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Further Reading
Literature

Cite when using the DUNE grid interface. . .

P. Bastian, M. Blatt, Markus, A. Dedner, N. Dreier, C. Engwer, R. Fritze, C. Gräser, C.
Grüninger, D. Kempf, R. Klöfkorn, M. Ohlberger, O. Sander.
The DUNE framework: basic concepts and recent developments.
Computers & Mathematics with Applications, 81, 2021, pp. 75–112.

P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, M. Ohlberger, O. Sander.
A Generic Grid Interface for Parallel and Adaptive Scientific Computing. Part I: Abstract
Framework.
Computing, 82(2–3), 2008, pp. 103–119.

P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, M. Ohlberger, O. Sander.
A Generic Grid Interface for Parallel and Adaptive Scientific Computing. Part II:
Implementation and Tests in DUNE.
Computing, 82(2–3), 2008, pp. 121–138.
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First steps with the DUNE grid interface

Files involved are:
1) First example: grid-exercise1.cc

I Iterate over the grid
I Add evaluation of different geometry information

2) Second example: integration.cc

I Evaluate an integral over the domain
I Add loop over all elements and local integration

3) Third example: Simulate a simple transport problem using a Finite Volume
discertization
I finitevolume.cc

I Main code to run a simple finite volume discretization (no changes required)

I fv.hh

I Add evaluation of face terms inside the element loop

Now lets go to the code . . .
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