
DUNE PDELab Tutorial 00
Piecewise Linear Finite Elements for the

Poisson Equation on Simplices

DUNE/PDELab Team

February 5, 2021

Contents
1 Introduction 2

2 Problem Formulation 2
2.1 Strong Formulation . 2
2.2 Weak Formulation . 2

3 The Finite Element Method 3
3.1 Finite Element Mesh . 4
3.2 Piecewise Linear Finite Element Functions 6
3.3 Finite Element Solution . 7
3.4 Implementation of the Solution Steps 9

4 Realization in PDELab 12
4.1 Function main . 13
4.2 Function driver . 15
4.3 Local Operator PoissonP1 . 20
4.4 Running the Example . 26

5 Outlook 28

1

1 Introduction
In this tutorial we solve Poisson’s equation with piecewise linear conforming finite
elements on simplicial elements in one, two and three space dimensions. This can
be considered as the “hello world” example in the numerical solution of partial dif-
ferential equations which every software should be able to solve easily (well, there
are codes which have difficulties with triangles). We first provide a short review of
the problem and its finite element solution in order to fix the notation. Then we
demonstrate how this problem is solved using DUNE and PDELab.

Depends On

This tutorial depends on no other tutorials.

2 Problem Formulation

2.1 Strong Formulation

In this tutorial we consider the Poisson equation

−∆u = f in Ω, (1a)
u = g on ∂Ω, (1b)

where Ω ⊂ Rd (domains are open and connected sets) is a given, polyhedral domain
(elements with curved boundaries are possible in DUNE but will not be considered
here). The problem with homogeneous right hand side f ≡ 0 is sometimes called
Laplace equation. This problem is one of the basic equations of mathematical physics
which describes gravitational and electric potential as well as stationary heat or
groundwater flow. Poisson’s equation is an instance of an elliptic partial differential
equation. More about modeling with partial differential equations can be found in
[6, 1].

A function u ∈ C2(Ω) ∩ C0(Ω̄) (the space of twice continuously differentiable
functions in Ω which are continuous up to the boundary) is called a strong solution
if it satisfies equations (1a), (1b) pointwise. Condition (1b) is called a Dirichlet
boundary condition. Boundary conditions are necessary to render the solution unique
and sometimes one speaks also of a boundary value problem. Formally, one often
reduces (1a), (1b) to a problem with homogeneous Dirichlet boundary conditions
g ≡ 0 as the starting point for theoretical considerations. We will deliberately not
do this here as it is also not done in the computer implementation of the method.

2.2 Weak Formulation

Existence, uniqueness and stability of solutions, i.e. well-posedness in the sense of
Hadamard, is easier to prove for so-called weak solutions. As the weak formulation
is also the basis of the finite element method we explain it here.

2

As a start, suppose u is a strong solution of (1a), (1b) and take any function
v ∈ C1(Ω) ∩ C0(Ω̄) with v = 0 on ∂Ω, then we have by integration by parts:∫

Ω

(−∆u)v dx =

∫
Ω

∇u · ∇v dx =

∫
Ω

fv dx.

Observe that the boundary integral
∫
∂Ω
∇u · nv dx vanishes due to the fact that

v = 0 on ∂Ω. Loosely speaking v = 0 is a consequence of the Dirichlet boundary
condition u = g on ∂Ω.

Introducing the abbreviations

a(u, v) =

∫
Ω

∇u · ∇v dx, l(v) =

∫
Ω

fv dx (2)

one can on the other hand ask the question: Is there a class, more specific a vector
space, of functions V with Vg = {v ∈ V : v = g on ∂Ω} and V0 = {v ∈ V :
v = 0 on ∂Ω} such that the problem

u ∈ Vg : a(u, v) = l(v) ∀v ∈ V0 (3)

has a unique solution. The answer is yes and in particular one can prove the follow-
ing:

i) With V = H1(Ω), the Sobolev space of functions with square integrable weak
derivatives, the problem (3) has a unique solution provided the bilinear form
a : V ×V → R is continuous and coercive on the subspace V0 ⊂ V and the linear
form l : V → R is also continuous. Coercivity on V0 follows from Friedrich’s
inequality and for the continuity of the right hand side functional f ∈ L2(Ω) is
a sufficient condition.

ii) If in addition u ∈ C2(Ω) ∩ C0(Ω̄), then the solutions of (3) and (1a), (1b)
coincide.

We call (3) the weak formulation of (1a), (1b). As it has a unique solution under
more general conditions than (1a), (1b), e.g. discontinuous right hand side functions
f , it can be considered a generalization of the problem.

3 The Finite Element Method
The (conforming) finite element method, in a nutshell, is based on the weak for-
mulation where the function space V is replaced by a subspace Vh ⊂ V which is
finite dimensional. Here, the subscript h relates to the dimension of the function
space. One major part of the finite element method is to construct such so-called
finite element spaces. Typically, finite element spaces consist of piecewise polyno-
mial functions. We consider one particular choice, the space of linear functions on
simplicial elements. There are many text books about the finite element method, a
small selection is [6, 7, 4, 2, 3, 5, 9, 10, 11, 1].

3

3.1 Finite Element Mesh

In order to construct a finite element space a finite element mesh is required. For
simplicity we just consider meshes consisting of d-simplices, where a simplex in d
dimensions is the convex hull of d + 1 points x0, . . . , xd ∈ Rd (thus a simplex is, by
definition, a closed set of points).

The finite element mesh consists of an ordered set

Xh = {x1, . . . , xN} (4)

of points in Rd called vertices and an ordered set

Th = {T1, . . . , TM} (5)

of d-simplices called elements. The elements form a partition of the polygonal do-
main Ω ⋃

T∈Th

T = Ω, ∀T, T ′ ∈ Th, T 6= T ′ : T̊ ∩ T̊ ′ = ∅, (6)

and where each of the vertices xT,0, . . . , xT,d of a d-simplex T ∈ Th coincides with a
vertex of the set Xh (and every x ∈ Xh is a vertex of at least one element).

A simplicial mesh is called conforming if the intersection of two different elements,
T ∩ T ′, is either empty or a facet (a simplex of lower dimension, i.e. a vertex, edge,
face) of both elements.

The association of the local numbering of vertices within each element and the
global numbering of vertices in the vertex set is facilitated via the local to global
map defined by:

∀T ∈ Th, 0 ≤ m ≤ d : gT (m) = j ⇔ xT,m = xj. (7)

The map gT : {0, . . . , d} → N plays also a very important role in the implementation
of the finite element method. Note also that the symbol g is used for the local to
global map and the Dirichlet boundary conditions but it should always be clear from
the context which function is meant.

The index set of the vertices is denoted by Ih = {1, . . . , N}. It can be partitioned
into indices of interior and boundary vertices:

Ih = I inth ∪ I∂Ω
h , I inth = {i ∈ Ih : xi ∈ Ω}, I∂Ω

h = {i ∈ Ih : xi ∈ ∂Ω}.

In order to illustrate the notation introduced, Figure 1 shows an example of
a conforming finite element mesh in two space dimensions with its numbering of
vertices and elements, as well as the local to global map. In order to improve clarity
we use i, j only as global indices, and m as local.

Finally, by
h = max

T∈Th
diam(T) (8)

we denote the mesh size.

4

T1

T2

T3

T4

1

2 3

4

5

0
0

1 1

2 0

01
2
11

2 2

gT1(0) = 2, gT1(1) = 3, gT1(2) = 1,
gT2(0) = 2, gT2(1) = 1, gT2(2) = 4,
gT3(0) = 1, gT3(1) = 3, gT3(2) = 5,
gT4(0) = 1, gT4(1) = 5, gT4(2) = 4.

I inth = {1}, I∂Ω
h = {2, 3, 4, 5}

Figure 1: Example of a finite element mesh and the local to global numbering.

d = 1
(0, 0) (1, 0)

0 1

d = 2
(0, 0) (1, 0)

(0, 1)

0 1

2

d = 3
(0, 0, 0) (1, 0, 0)

(0, 0, 1)
(0, 1, 0)

0 1

23

Figure 2: The reference simplices in dimension 1, 2, 3 with vertex positions and
local numbering

Reference Elements and Element Transformation

The geometry of the mesh elements can be described more easily by reference ele-
ments and an element transformation map. To that end, the reference d-simplex is
defined by

T̂ d =

{
x ∈ Rd : 0 ≤

d∑
l=1

(x)l ≤ 1 ∧ ∀l : (x)l ≥ 0

}
.

The vertices of the reference d simplex are given by

x̂d0 = (0, . . . , 0)T , ∀l,m ∈ {1, . . . , d} : (x̂dm)l = δm,l.

Figure 2 shows the reference elements of dimension 1, 2 and 3 with their numbering
of the vertices.

The relation between the reference elements and the elements of the mesh is
provided by the element transformation maps. For each element T ∈ T there is a
map

µT : T̂ → T

which maps points of the reference element to the given element T . In an affine

5

mesh the map µT is affine linear, i.e. it has the form

µT (x̂) = BT x̂+ aT

for given d × d matrices BT and d-vectors aT . Consistency of the local vertex
numbering is ensured by the condition

∀m ∈ {0, . . . , d} : µT (x̂m) = xT,m.

3.2 Piecewise Linear Finite Element Functions

Given a conforming, simplicial and affine finite element mesh in d dimensions we
now can define the space of piecewise linear finite element functions Vh. It is given
by

Vh(Th) = {v ∈ C0(Ω) : ∀T ∈ Th : v|T ∈ Pd1} (9)

where
Pd1 = {p : Rd → R : p(x) = aTx+ b, a ∈ Rd, b ∈ R}

is the vector space of multivariate polynomials of degree one in Rd. It turns out that
the condition of continuity is crucial to ensure that Vh ⊂ H1(Ω). This definition
of the finite element space given above does not refer to a basis. However, for the
practical computations one requires a basis for the finite element space. Analysis
reveals that the dimension of the finite element space Vh is related to the number of
vertices of the mesh:

dimVh = N = dimXh.

Therefore, one may construct a basis Φh = {φ1, . . . , φN} of Vh where each basis
function φi is related to vertex xi ∈ Xh in the following way:

∀i, j ∈ Ih : φi(xj) = δi,j.

A basis with this property is called a Lagrange basis. Exploiting this property of the
basis we may define the subspace of finite element functions satisfying homogeneous
Dirichlet boundary conditions

Vh,0 = {v ∈ Vh : ∀i ∈ I∂Ω
h : v(xi) = 0}

and the set of finite element functions satisfying the given boundary conditions (1b):

Vh,g = {v ∈ Vh : ∀i ∈ I∂Ω
h : v(xi) = g(xi)}.

Note that Vh,0 is a subspace of Vh and satisfies the homogeneous boundary data
exactly whereas Vh,g is not a subspace (it is an affine space) and only approximates
the given boundary data by piecewise linear functions. Twodimensional Lagrange
basis functions are illustrated in Figure 3.

6

Figure 3: Illustration of piecewise linear Lagrange basis functions in 2d. Left one
corresponds to an interior vertex, right to a boundary vertex.

3.3 Finite Element Solution

We are now in a position to define and solve the finite element problem. As pointed
out above, the idea is to solve the weak formulation in appropriate finite-dimensional
spaces, i.e.:

uh ∈ Vh,g : a(uh, v) = l(v) ∀v ∈ Vh,0.
Using the Lagrange basis defined above we may expand uh ∈ Vh as

uh =
N∑
j=1

(z)jφj

with coefficient vector z ∈ RN . Inserting into the discrete weak formulation (3.3)
yields:

a(uh, v) = l(v) ∀v ∈ Vh,0 (discrete weak problem),

⇔ a

(
N∑
j=1

(z)jφj, φi

)
= l(φi) ∀i ∈ I inth (insert basis, linearity),

⇔
N∑
j=1

(z)ja (φj, φi) = l(φi) ∀i ∈ I inth (linearity). (10)

The condition uh ∈ Vh,g can be formulated as a set of equations

uh(xi) = zi = g(xi) ∀i ∈ I∂Ω
h (11)

which are also linear. Combining the equations (10) and (11) into a single system
of linear equations results in

Az = b (12)

where
(A)i,j =

{
a(φj, φi) i ∈ I inth

δi,j i ∈ I∂Ω
h

, (b)i =

{
l(φi) i ∈ I inth

g(xi) i ∈ I∂Ω
h

. (13)

7

This system may be solved in various ways. The first option are direct solvers based
on some form of the Gaussian elimination technique. However, the matrix A is very
sparse as it contains only relatively few nonzero elements per row (3 for d = 1, about
7 for d = 2 and about 14 for d = 3 and Gaussian elimination may have difficulties
to exploit this fact, especially for d = 3.

Another option is to solve the system iteratively. As the matrix is symmetric and
positive definite there is a variety of methods available which produce, starting from
an initial iterate z0, a convergent sequence limk→∞ z

k = z. As a solution one accepts
the first iterate which satisfies the computable criterion ‖b−Azk‖ < ε‖b−Az0‖ for
a given reduction factor ε.

A very simple (but not very effective) method is Richardson iteration which is
used to illustrate the concept. It is given by the formula

zk+1 = zk + ω(b− Azk).

Algorithmically, this iterative method can be implemented as follows:
1: Given A, b, ε and z . input data
2: d = b− Az . compute initial defect
3: τ = ε‖d‖ . compute target threshold
4: while ‖d‖ ≥ τ do . run until convergence
5: z = z + ωd . update solution
6: y = Ad . matrix-vector product
7: d = d− ωy . update defect
8: end while

It can be observed that the matrix A is only involved in matrix-vector products
in lines 2 and 6, an observation that is true for most iterative solvers. This op-
eration can effectively take into account the sparsity structure of the matrix and
only computations for non-zero elements are necessary. Thus, one iteration can be
implemented with effort O(N). The other major factor in the total work is then the
number of iterations needed to achieve the convergence criterion. To keep this num-
ber at an acceptable level effective preconditioners are required. We do ignore any
discussions on effective preconditioners here but they may require a major portion
of the total work.

Matrix-vector products y = Az, require between one and three memory accesses
for two floating point operations as there is never any reuse of the matrix elements.
The exact number depends on the cache reuse of x and y (this is true for dense
and sparse matrices). This fact leads to a very low floating point performance on
modern processors which are much better at computations than at memory access.
A possible way out of this dilemma is to perform the matrix-vector product in a
matrix-free fashion, i.e. to recompute the matrix elements while performing the
matrix-vector product instead of storing them. This may lead to a faster execution
of this operation, especially for certain high-order elements. Let us consider the
matrix-free execution of the matrix-vector product, better called operator evaluation,
in more detail. For i ∈ I inth we get

(Az)i =
N∑
j=1

(A)i,j(z)j =
N∑
j=1

a(φj, φi)(z)j = a

(
N∑
j=1

(z)jφj, φi

)
= a(uh, φi) (14)

8

where uh is the finite element function with the coefficients z. On the other hand,
for i ∈ I∂Ω

h we have

(Az)i =
N∑
j=1

δi,j(z)j = (z)i.

We may summarize the typical steps needed to solve the finite element problem as
follows:

1) Assembling the matrix A. This mainly involves the computation of the matrix
elements a(φj, φi) and storing them in an appropriate data structure.

2) Assembling the right hand side vector b. This mainly involves evaluations of the
right hand side functional l(φi).

3) Perform a matrix free operator evaluation y = Az. This involves evaluations of
a(uh, φi) for all test functions φi and a given function uh.

3.4 Implementation of the Solution Steps

We now consider the three operations outlined in the previous section in more detail.
The efficient implementation of these operations involves the reference elements and
the element transformation as part of the following tools:

Tool 1) Transformation formula for integrals. For T ∈ Th we have∫
T

y(x) dx =

∫
T̂

y(µT (x̂))| detBT | dx̂.

Tool 2) Quadrature formula. The midpoint rule reads∫
T̂

q(x̂) dx̂ = q(Ŝd)wd

where Ŝd is the center of mass of the reference simplex T̂ d and wd is the
volume of T̂ d. This quadrature formula is exact for linear functions.

Tool 3) Shape functions. On the reference simplex the linear Lagrange basis func-
tions are φ̂m(x̂) = (x̂)m for m > 0 and φ̂0(x̂) = 1 −

∑d
m=1(x̂)m. The basis

functions on a general element T can then be defined via transformation

φT,m(µT (x̂)) = φ̂m(x̂).

This construction principle can be extend to any function defined on the
reference element. Given ŵ(x̂) then

w(µT (x̂)) = ŵ(x̂) (15)

is the corresponding function on the general element.

9

Tool 4) Computation of gradients. The construction via the reference element is
particularly useful when computing gradients of functions on the general
element. Applying the chain rule to (15) gives

BT
T∇w(µT (x̂)) = ∇̂ŵ(x̂) ⇔ ∇w(µT (x̂)) = B−TT ∇̂ŵ(x̂).

Gradients can be computed by computing gradients on the reference element
and multiplying them with B−TT .

Note that all these tools can be extended to higher order basis functions and more
general element transformations.

Assembly of the Right Hand Side

We start with the assembly of the right hand side vector b defined in equation (13).
Since there are typically much more interior vertices than boundary vertices we
may first compute (b)i = l(φi) for all i ∈ Ih and then overwrite the entries on the
boundary with (b)i = g(xi). Moreover, when considering the global index i only the
pairs in the set

C(i) = {(T,m) ∈ Th × {0, . . . , d} : gT (m) = i}

contribute to the computation, which can be carried out in the following way:

(b)i = l(φi) =

∫
Ω

fφi dx (definition)

=
∑
T∈Th

∫
T

fφi dx (use mesh)

=
∑

(T,m)∈C(i)

∫
T̂

f(µT (x̂))φ̂m(x̂)| detBT | dx (localize)

=
∑

(T,m)∈C(i)

f(µT (Ŝd))φ̂m(Ŝd)| detBT |wd + error. (employ quadrature)

Note that for general f the integral cannot be computed exactly. The quadrature
formula here only yields exact results for elementwise constant functions f as φi is
linear. From now on we ignore this quadrature error.

The computations for all components i ∈ Ih are now arranged in such a way that
all computations involving element T are carried out together. These computations
at element T are:

(bT)m = f(µT (Ŝd))φ̂m(Ŝd)| detBT |wd ∀m = 0, . . . , d. (16)

Then define the restriction matrix RT : RN → Rd+1 as

(RT z)m = (z)i ∀ 0 ≤ m ≤ d, gT (m) = i, (17)

extracting all components involved with element T . Then the assembly of the right
hand side can be written in compact form as

b =
∑
T∈Th

RT
T bT . (18)

10

Assembly of the Matrix

The assembly of the matrix A defined in (13) can be carried out in a similar way. We
assemble first the entries as (A)i,j = a(φj, φi) for all i, j ∈ Ih and then modify the
matrix to respect the Dirichlet boundary conditions. In the computation of (A)i,j
only the triples

C(i, j) = {(T,m, n) ∈ Th × {0, . . . , d} × {0, . . . , d} : gT (m) = i ∧ gT (n) = j}

are involved due to the locality of the Lagrange basis functions:

(A)i,j = a(φj, φi) =

∫
Ω

∇φj · ∇φi dx (definition)

=
∑
T∈Th

∫
T

∇φj · ∇φi dx (use mesh)

=
∑

(T,m,n)∈C(i,j)

∫
T̂

(B−TT ∇̂φ̂n(x̂)) · (B−TT ∇̂φ̂m(x̂))| detBT | dx̂ (localize)

=
∑

(T,m,n)∈C(i,j)

(B−TT ∇̂φ̂n(Ŝd)) · (B−TT ∇̂φ̂m(Ŝd))| detBT |wd. (quadrature)

Note that the quadrature formula is exact since gradients of linear basis functions
and BT are constant on the element.

Again, the computations are arranged in such a way that all the computations
necessary at a single element are collected. To that end, the gradients of the basis
functions on the reference element (which are independent of position) are collected
in the d× d+ 1 matrix

Ĝ =
[
∇̂φ̂0(Ŝd), . . . , ∇̂φ̂d(Ŝd)

]
.

The matrix Ĝ need only be computed once as it does not depend on the particular
element. With the matrix of transformed gradients G = B−TT Ĝ all computations at
element T are combined in the so-called local stiffness matrix given by

AT = GTG| detBT |wd. (19)

and the system matrix A can be computed as

A =
∑
T∈Th

RT
TATRT . (20)

11

Matrix-free Operator Evaluation

Finally, the considerations above can be applied to the matrix-free operator evalu-
ation (14):

(Az)i = a(uh, φi) =

∫
Ω

∇uh · ∇φi dx = (definition)

=
∑
T∈Th

∫
T

∇uh · ∇φi dx (use mesh)

=
∑

(T,m)∈C(i)

∫
T̂

(
d∑

n=0

(z)gT (n)B
−T
T ∇̂φ̂n

)
· (B−TT ∇̂φ̂m)| detBT | dx̂ (localize)

=
∑

(T,m)∈C(i)

(
d∑

n=0

(z)gT (n)B
−T
T ∇̂φ̂n

)
· (B−TT ∇̂φ̂m)| detBT |wd. (quadrature)

Again, computations for all indices can be arranged in an element-wise fashion which
now computes per element

yT = | detBT |wdGTGRT z (21)

and then accumulates
Az =

∑
T∈Th

RT
T yT . (22)

Generic Assembly Procedure

Comparing the formulas (18), (20) and (22) for the three basic operations necessary
for finite element computations reveals a joint algorithmic form:
1: for T ∈ Th do . loop over mesh elements
2: zT = RT z . load element data
3: qT = compute(T, zT) . element local computations
4: Accumulate(qT) . store result in global data structure
5: end for
It turns out that this basic structure is the same for a huge number of finite ele-

ment and finite volume methods independently of the partial differential equation to
be solved, including linear and nonlinear equations, stationary and time-dependent
equations and even systems of equations. Only the element-local computations in
step (3) need to be exchanged. Therefore PDELab provides a generic assembler
class carrying out steps (1), (2) and (4) while the element-local computations are
supplied by a parameter class.

4 Realization in PDELab
The solution of Poisson’s equation with piecewise linear finite elements in dimension
1, 2 and 3 is now realized using PDELab. The dimension-independent implementa-
tion is an important aspect of this example. The main file is tutorial00.cc which
includes several other files containing different solution components:

12

1) File poissonp1.hh contains the class template PoissonP1 realizing the element-
local computations comprising the piecewise linear finite element method as de-
scribed in Subsection 3.4.

2) File driver.hh contains the function template driver setting up and solving
the finite element problem on a particular grid.

3) And finally the file tutorial00.cc includes all the other files and contains the
main function which reads the user parameters, creates a finite element mesh and
calls the driver function to solve the problem on the given mesh.

We discuss these functions and classes in detail in a top down manner.

4.1 Function main

The file tutorial00.cc contains the main function which is the starting point of
every C++ program. All the DUNE code should be within a try block in order to
catch any exceptions DUNE might throw and to print meaningful error messages:

try{
...

}
catch (Dune:: Exception &e){

std::cerr << "Dune␣reported␣error:␣" << e << std::endl;
return 1;

}

The function starts by instantiating the MPIHelper singleton:

Dune:: MPIHelper&
helper = Dune:: MPIHelper :: instance(argc , argv);

if(Dune:: MPIHelper :: isFake)
std::cout << "This␣is␣a␣sequential␣program." << std::endl;

else
std::cout << "Parallel␣code␣run␣on␣"

<< helper.size() << "␣process(es)" << std::endl;

In case of a parallel code it initializes the MPI (message passing interface) library.
Even if there is no MPI library to initialize there is a default version, so you can
always use this code.

The next block of four lines uses the parameter tree parser to read the user data
from an input file (colloquially called ini-file) and store it in a parameter tree object
named ptree:

Dune:: ParameterTree ptree;
Dune:: ParameterTreeParser ptreeparser;
ptreeparser.readINITree("tutorial00.ini",ptree);
ptreeparser.readOptions(argc ,argv ,ptree);

It is customary that the input file has the same name as the main file of the appli-
cation with the extension .ini. Here is the content of the file tutorial00.ini:

13

[grid]
dim=2
refinement =5

[grid.oned]
a=0.0
b=1.0
elements =10

[grid.twod]
filename=unitsquare.msh

[grid.threed]
filename=unitcube.msh

[output]
filename=tuttut

The parameter file is structured hierarchically into sections beginning with the sec-
tion name in square brackets. Within each section names can be associated with
strings which can be interpreted in various ways. E.g. the following two lines from
the main function read the grid’s dimension and number of global refinements from
the block [grid]:

const int dim = ptree.get("grid.dim",(int)2);
const int refinement = ptree.get <int >("grid.refinement");

The first version provides a default value in case the key is not contained in the
input file. Note that the type of the object returned by the get-method (and the
corresponding interpretation of the string in the file) is determined by the type of
the default value. In the second version the type is explicitly given by the template
parameter and an exception is thrown if the key is not contained in the file.

The rest of the main function creates meshes in 1, 2 and 3 dimensions and calls
the function driver. Since the grid dimension is a template parameter in DUNE but
we want to select the dimension at run-time all three variants need to be compiled.

For the one-dimensional case we use the OneDGrid implementation of the DUNE
grid interface and construct the initial grid from the user data provided in the ini
file.

For the two- and three-dimensional case either ALUGrid or UGGrid are used and
ALUGrid is preferred if it is available. If neither is present the code cannot be run.
Both grid managers can read two- and three-dimensional simplicial grids generated
by the program gmsh [8]. In the following we just explain the 2d section here as all
sections are similar.

First we define the type Grid to be either ALUGrid or UGGrid using some pre-
processor magic. An error message is printed if neither grid manager is installed:
#if HAVE_DUNE_ALUGRID

typedef Dune::ALUGrid <2,2,Dune::simplex ,
Dune:: nonconforming > Grid;

#elif HAVE_UG

14

typedef Dune::UGGrid <2> Grid;
#else // ! (HAVE_UG || HAVE_DUNE_ALUGRID)

std::cout << "Example␣requires␣a␣simplex␣grid!" << std::endl;
#endif

Now we can create a DUNE grid initialized with the coarse mesh from the gmsh
input file:

#if (HAVE_UG || HAVE_DUNE_ALUGRID)
std:: string filename = ptree.get("grid.twod.filename",

"unitsquare.msh");
Dune:: GridFactory <Grid > factory;
Dune::GmshReader <Grid >:: read(factory ,filename ,true ,true);

Here the method get is provided with the name of the entry in the parameter file
and a default value in case the entry is not present in the file.

The next few lines refine the mesh globally the specified number of times and
report the time spent:

Dune::Timer timer;
gridp ->globalRefine(refinement);
std::cout << "Time␣for␣mesh␣refinement␣" << timer.elapsed ()

<< "␣seconds" << std::endl;

Voilà, we can call the function driver to solve the finite element problem on the
given mesh (which in this case is the finest mesh in the complete hierarchy, the so
called leaf view):

driver(gridp ->leafGridView (),ptree);

4.2 Function driver

The generic driver function contains all the PDELab code that sets up and solves
the finite element problem. The solution of complicated problems such as nonlinear
problems, instationary problems or systems of partial differential equations follows
the same pattern with some of the components exchanged, as will become clear in
further examples.

The function driver has the following interface:

template <class GV >
void driver (const GV& gv, Dune:: ParameterTree& ptree)

The first argument is supposed to provide a leaf grid view of a conforming simplicial
grid in any space dimension. A grid view is a subset of a hierarchical finite element
mesh as it is provided by the DUNE grid interface. A leaf grid view provides the
finest mesh defined in the hierarchy and here it represents the mesh Th on which we
want to solve the finite element problem. The second argument provides a parameter
tree containing user data. Currently only the output file name is taken from the
parameter tree.

The function starts by extracting the dimension of the grid (we assume that
grid and world dimension coincide) and the type used by the grid to represent

15

coordinates. Then the type to be used for the entries of the vectors and matrices is
defined:

const int dim = GV:: dimension;
typedef typename GV::Grid::ctype DF; // type for ccordinates

The next step is to instantiate objects representing the data of the partial dif-
ferential equation to be solved:

auto flambda = [](const auto& x){
return Dune:: FieldVector <RF ,1>(-2.0*x.size ());};

auto f = Dune:: PDELab ::
makeGridFunctionFromCallable(gv,flambda);

Here we use one way where a generic lambda function flambda (a C++14 feature) is
defined which returns a value associated with a point x in global coordinates. In this
case it denotes the right hand side f in the partial differential equation. Note that
it is mandatory to explicitly specify the type for the return value in order to make
the automatic extraction of the return type work. Then the lambda function (actu-
ally closure) is used by the function makeGridFunctionFromCallable which wraps
the lambda function into a class having the interface of a PDELab GridFunction.
Such types and corresponding objects can then be used to interpolate finite element
functions or provide graphical output.

The same code can now be used to define a function g extending the Dirichlet
boundary values into the interior. This function can be used to provide e.g. the
exact solution of the problem for testing purposes or an initial guess for the iterative
solvers.

auto glambda = [](const auto& x){
RF s=0.0; for (std:: size_t i=0; i<x.size (); i++) s+=x[i]*x[i];
return s;};

auto g = Dune:: PDELab ::
makeGridFunctionFromCallable(gv,glambda);

Finally we need to declare where Dirichlet boundary conditions are to be applied.
In our example, Dirichlet boundary conditions are applied on all of ∂Ω but in general
one may apply also other boundary conditions.

auto blambda = [](const auto& x){ return true ;};
auto b = Dune:: PDELab ::

makeBoundaryConditionFromCallable(gv,blambda);

The return type of the lambda function must be bool. Note that the function
makeBoundaryConditionFromCallable is now used as the specification of con-
straints on function spaces, which requires a class with a different interface in PDE-
Lab.

The purpose of the next block of lines

typedef Dune:: PDELab :: PkLocalFiniteElementMap <GV,DF,RF ,1> FEM;
FEM fem(gv);
typedef Dune:: PDELab :: ConformingDirichletConstraints CON;
typedef Dune:: PDELab ::ISTL:: VectorBackend <> VBE;

16

typedef Dune:: PDELab :: GridFunctionSpace <GV,FEM ,CON ,VBE > GFS;
GFS gfs(gv,fem);
gfs.name("P1");

is to set up a grid function space represented by the type GFS. It can be considered
to represent the finite element space Vh, i.e. it knows about the dimension of the
space, the basis functions as well as the local to global map.

The first two lines set up a finite element map of type PkLocalFiniteElementMap.
A finite element map associates finite element basis functions, defined on the cor-
responding reference element, with each element of the mesh. In our simple case
every element of the mesh is supposed to have the same basis functions but in gen-
eral, e.g. in hp finite element methods, every element could have a different set of
basis functions. In addition, information is provided how the global finite element
space Vh is to be constructed from its local, element-wise pieces. This involves the
identification of global degrees of freedom via the local to global map.

The next line defines the type CON, a so-called constraints class, which provides
a way to assemble constraints on a function space. In our case it is used to identify
degrees of freedom constrained by Dirichlet boundary conditions.

The following line defines the type VBE which provides a vector backend. PDELab
is designed in such a way that different iterative solver libraries can be used. Such
libraries also provide their own data types for vectors and (sparse) matrices and
we would like PDELab to be able to directly fill the data into these data structures
without a copy step. In this case here we use the ISTL vector backend using DUNE’s
own iterative solver library ISTL.

Now all template parameters are in place to define the type GFS from the class
template GridFunctionSpace. This class template combines all the given informa-
tion to construct the global finite element space Vh on a given grid view. Finally an
object of this class is instantiated and the space is given a name.

The grid function space actually corresponds to the unconstrained function space
Vh. The CON class does not provide the constraints themselves but rather a way to
determine the constraints. The determination of the constraints for a specific grid
function space from the boundary condition type function b constructed above is
done by the following lines:

typedef typename GFS:: template
ConstraintsContainer <RF >:: Type CC;

CC cc;
Dune:: PDELab :: constraints(b,gfs ,cc); // assemble constraints
std::cout << "constrained␣dofs=" << cc.size() << "␣of␣"

<< gfs.globalSize () << std::endl;

The constraints function assembles the constraints, in our case the index set I∂Ω
h ,

into the constraints container cc of type CC. The separation of the function space
Vh and the constraints set I∂Ω

h allows one to reuse the function space together with
different constraints, e.g. for a system of partial differential equations.

The next step is to declare a variable that will later on contain the solution
vector z:

using Z = Dune:: PDELab :: Backend ::Vector <GFS ,RF >;

17

Z z(gfs); // initial value

The type Z representing the RN is extracted from the vector backend of the grid
function space while we are still able to specify the type RF for each component of
the solution vector.

The finite element isomorphism FEh : RN → Vh,

FEh(z) =
N∑
j=1

(z)jφj

provides a one-to-one correspondence between coefficient vectors and finite element
functions. The following lines produce a finite element function from a coefficient
vector:

typedef Dune:: PDELab :: DiscreteGridFunction <GFS ,Z> ZDGF;
ZDGF zdgf(gfs ,z);

You should be aware that the object zdgf stores a reference to the object z which
means that when you change entries of the coefficient vector then also the function
changes.

Often one wants to fill a coefficient vector such that FEh(z) approximates a
given function, say w. In general, w is not a finite element function, but if it is,
then w = FEh(z) should hold. So what we seek is z = FE−1

h (P (w)) where P is a
projection into the finite element space. This is provided by the following line:

Dune:: PDELab :: interpolate(g,gfs ,z);

In this case the projection P used by the function interpolate is the Lagrange
interpolation of the function g:

P (g) =
N∑
j=1

g(xj)φj,

i.e. (z)j = g(xj) where xj are the mesh vertices. The projection to be used depends
on the finite element space and is part of the definition of the grid function space.
For example in the case of discontinuous finite element functions it might be an
L2-projection.

The line

Dune:: PDELab :: set_nonconstrained_dofs(cc ,0.0,z);

then sets all interior degrees of freedom to zero.
As pointed out in Subsection 3.4 the assembly of the right hand side b and the

matrix A as well as matrix-free computation of Az can be separated into a generic
part looping over the finite element mesh and doing element-local computations.
This separation is represented in the code by first setting up a local operator, here
of the type LOP

typedef PoissonP1 <decltype(f),FEM > LOP;
LOP lop(f,fem.find(*gv.template begin <0 >()));

18

providing the element-wise computations. The class template PoissonP1 imple-
menting the piecewise linear finite element method for Poisson’s equation is de-
scribed in detail below. The constructor requires the right hand side function as
the first argument and the finite element of the first element of the mesh as the
second argument. The finite element is used to precompute the basis functions on
the reference element as well as the gradients. Importantly, we assume that the
same basis is used for all mesh elements.

Now the local operator is used as one of the template arguments in the global
assembler or grid operator:

typedef Dune:: PDELab ::ISTL:: BCRSMatrixBackend <> MBE;
MBE mbe(1<<(dim +1)); // guess nonzeros per row
typedef Dune:: PDELab :: GridOperator <

GFS ,GFS , /* ansatz and test space */
LOP , /* local operator */
MBE , /* matrix backend */
RF,RF,RF, /* domain , range , jacobian field type*/
CC,CC /* constraints for ansatz and test space */
> GO;

GO go(gfs ,cc,gfs ,cc,lop ,mbe);

The grid operator implemented by the type GO provides the generic part of the
assembly procedure. It requires the types for ansatz and test space, which may be
different in general, the local operator type, a matrix backend, the types to be used
for components of coefficients vectors of the ansatz and test space as well as the
entries of the Matrix A and last but not least the types of the constraints containers
of ansatz and test space. The constructor then takes the corresponding objects as
arguments. Note that here an object mbe of the matrix backend type is needed. It
is constructed with a guess of the average number of nonzeros per row.

As the next step we need to select a solver that will be used to solve the linear
system Az = b. This is done by the following two lines:

typedef Dune:: PDELab :: ISTLBackend_SEQ_CG_AMG_SSOR <GO> LS;
LS ls(100 ,3);

Since we used the ISTL backends for vectors and matrices we need to select a solver
from the ISTL library. Complete solvers are packaged by PDELab for sequential and
parallel computations. Here we select the conjugate gradient method with algebraic
multigrid as preconditioner and symmetric successive overrelaxation as smoother in
multigrid in its sequential implementation. The linear solver object ls is initialized
with the maximum number of iterations and a verbose parameter.

So far, no finite element computations have actually been performed, only the
necessary components have been configured to now do the real work together. We
can now set up the matrix A as well as the right hand side b and then solve the
system. Since this is required often, there is a class in PDELab for this:

typedef Dune:: PDELab ::
StationaryLinearProblemSolver <GO,LS,Z> SLP;

SLP slp(go,ls,z,1e -10);

19

The object slp of type StationaryLinearProblemSolver receives the grid opera-
tor, the selected linear solver backend and a coefficient vector with the initial guess
and the correct Dirichlet boundary data and solves the problem up to a given accu-
racy upon a call of the apply method:

slp.apply (); // here all the work is done!

In the given example a problem with a known exact solution, which is given by
the function g, is solved. In order to compare the computed solution with the exact
solution we initialize another coefficient vector with the Lagrange interpolant of the
exact solution and provide a grid function:

Z w(gfs); // Lagrange interpolation of exact solution
Dune:: PDELab :: interpolate(g,gfs ,w);
ZDGF wdgf(gfs ,w);

Finally it is time to write the results to disk for postprocessing with VTK/Par-
aView. This is done with DUNE’s VTKWriter class:

Dune::VTKWriter <GV> vtkwriter(gv,Dune::VTK:: conforming);
typedef Dune:: PDELab :: VTKGridFunctionAdapter <ZDGF > VTKF;
vtkwriter.addVertexData(std::shared_ptr <VTKF >(new

VTKF(zdgf ,"fesol")));
vtkwriter.addVertexData(std::shared_ptr <VTKF >(new

VTKF(wdgf ,"exact")));
vtkwriter.write(ptree.get("output.filename","output"),

Dune::VTK:: appendedraw);

The VTK writer is not part of PDELab and uses a different interface to represent
functions on a grid. Therefore we need to use the adapter class VTKF to pass PDELab
grid functions to the VTK writer. Moreover, objects of this adapter class should
be passed via a std::shared_ptr to the VTK writer object since this takes care
about the memory management. The output file is written when the write method
is called.

4.3 Local Operator PoissonP1

The finite element method itself is implemented in the so-called local operator re-
alized by the class template PoissonP1 in file poissonp1.hh. It provides all the
necessary element-local computations as described in Subsection 3.4 and is declared
as follows:

template <typename F, typename FiniteElementMap >
class PoissonP1;

The first template parameter provides the right hand side function of the PDE and
the second parameter provides a finite element map giving access to finite element
basis functions on the reference element for all elements of the grid. The class derives
from the PDELab classes FullVolumePattern and LocalOperatorDefaultFlags
which provide some default constants and methods.

The basic assumption of this implementation of the finite element method is that
all elements of the mesh are simplices of dimension d which use the same polynomial

20

degree 1. In order to make the code faster it is a good idea to do the evaluation
of the basis functions and their gradients on the reference element once before the
computations start. This will be done in the constructor, but before we can do so
we need to do some preparations.

Type Definitions and Data Members

The class begins by extracting important types. The finite element map provides a
finite element for each element of the map. Its type is

typedef typename FiniteElementMap :: Traits :: FiniteElementType
FiniteElementType;

Among other things the finite element contains the basis functions on the refer-
ence element which can be accessed via the following type:

typedef typename FiniteElementType :: Traits :: LocalBasisType
LocalBasisType;

DUNE thinks of basis functions on the reference element to be of the most general
form

φ̂ : Ad → Bk, ∇φ̂ : Ad → Bk×d,
i.e. they may be vector-valued. The following type definitions

typedef typename LocalBasisType :: Traits :: DomainType
DomainType;

typedef typename LocalBasisType :: Traits :: RangeFieldType
RF;

typedef typename LocalBasisType :: Traits :: RangeType
RangeType;

typedef typename LocalBasisType :: Traits :: JacobianType
JacobianType;

provide types to represent arguments and results of basis function evaluations.
DomainType represents Ad, RF represents B, RangeType represents Bk and finally
JacobianType represents Bk×d.

Next, we extract some important constants, the dimension of the grid and the
number of basis functions per element:

enum {dim=LocalBasisType :: Traits :: dimDomain };
enum {n=dim +1};

As private data members the class stores an instance of the right hand side
function f provided by the driver:

const F f; // right hand side function

the midpoint quadrature rule

DomainType qp; // center of mass of refelem
double weight; // quadrature weight on refelem

where qp is Ŝd and weight is wd, and the values of the basis functions at the
quadrature point and their gradients:

21

double phihat[n]; // basis functions at qp
double gradhat[dim][n]; // coordinate x #basisfct

Then, already in the public part, we need to define some constants that control
the operation of the grid operator doing the global assembly:

enum { doPatternVolume = true };
enum { doAlphaVolume = true };
enum { doLambdaVolume = true };

These constants are evaluated at compile time and tell the grid operator class which
methods have been implemented in the local operator by the user. Actually, the
base class LocalOperatorDefaultFlags provides all possible flags with the value
false and we just need to overwrite the ones that are needed. The constant
doPatternVolume tells the global assembler to determine the sparsity pattern of
the matrix A from a method pattern_volume which is inherited from the base class
FullVolumePattern. This default implementation inserts nonzeros between all de-
grees of freedom of an element. The constants doAlphaVolume and doLambdaVolume
determine that our finite element method contains a volume integral involving the
finite element solution uh and a right hand side integral which does not involve the
finite element solution.

Setting doAlphaVolume to true implies that the local operator class implements
the methods alpha_volume, jacobian_apply_volume and jacobian_volume. Set-
ting doLambdaVolume to true implies that the method lambda_volume must be
implemented.

Constructor

The constructor of the class has the following signature:

PoissonP1 (const F& f_ , const FiniteElementType& fel)

It takes the right hand side function f and a finite element fel as argument. The
finite element is obtained from the finite element map and the first element of the
grid in the function driver.

First thing to do is to get the lowest order quadrature rule for simplices from
DUNE:

Dune:: GeometryType gt = fel.type ();
const Dune:: QuadratureRule <RF,dim >&

rule = Dune:: QuadratureRules <RF,dim >:: rule(gt ,1);

Then we check that this is actually the midpoint rule

if (rule.size ()>1) {
std::cout << "Wrong␣quadrature␣rule!" << std::endl;
exit (1);

}

and store the first quadrature point in the local data members:

22

weight = rule [0]. weight ();
qp = rule [0]. position ();

It is also a good idea to check that the basis given by the user has at least the correct
size:

if (fel.localBasis (). size ()!=n) {
std::cout << "Wrong␣basis!" << std::endl;
exit (1);

}

Now the basis functions can be evaluated at the quadrature point in the reference
element and the results are stored in the data members of the class:

std::vector <RangeType > phi(n);
fel.localBasis (). evaluateFunction(qp ,phi);
for (int i=0; i<n; i++) phihat[i] = phi[i];

And the same now for the gradients:

std::vector <JacobianType > js(n);
fel.localBasis (). evaluateJacobian(qp ,js);
for (int i=0; i<n; i++)

for (int j=0; j<dim; j++)
gradhat[j][i] = js[i][0][j];

Note that the last index loops over the number of basis functions.

Method lambda_volume

This method computes the contributions bT to the right hand side vector for a given
element as given in Eq.(16). It has the following signature:

template <typename EG, typename LFSV , typename R>
void lambda_volume (const EG& eg, const LFSV& lfsv ,

R& r) const

Argument eg provides the element T in a wrapped form such that PDELab need
not operate directly on a DUNE grid. With eg.geometry() the geometry of the
element can be accessed in the form of a Dune::Geometry. With eg.entity() one
can access the underlying codim 0 entity of the DUNE grid. The second argument
lfsv provides the test functions on the reference element and r provides a container
where the result should be stored.

First thing to do is to evaluate the right hand side function at the quadrature
point:

typename F:: Traits :: RangeType fval;
f.evaluate(eg.entity(),qp,fval);

Next, we compute the factor that is common to all entries of bT :

RF factor=fval*weight*eg.geometry (). integrationElement(qp);

23

Note that the method integrationElement on the geometry provides the value of
| detBT |.

Finally, we can compute the entries and store them in the results container:
for (int i=0; i<n; i++)

r.accumulate(lfsv ,i,-factor*phihat[i]);

Here it is important to note the minus sign because PDELab actually solves the
weak formulation as

r(uh, v) = a(uh, v)− l(v) = 0 ∀v ∈ V

since this is more appropriate in the case of nonlinear partial differential equations.

Method jacobian_volume

Next we need to compute the element contributions to the stiffness matrix as de-
scribed in Eq.(19). This is done by the method jacobian_volume with the following
interface:

template <typename EG, typename LFSU , typename X,
typename LFSV , typename M>

void jacobian_volume (const EG& eg, const LFSU& lfsu ,
const X& x, const LFSV& lfsv ,
M& mat) const

Its arguments are: eg providing the wrapped codim 0 entity T , lfsu providing the
basis functions of the ansatz space, x providing the coefficients of the current iterate
of the finite element solution, lfsv providing the test functions and mat a container
to store the result.

The jacobian_volume method works in the same way also for nonlinear prob-
lems. Nonlinear problems are solved iteratively, e.g. using Newton’s method or a
fixed-point iteration, where the method should provide a linearization at the current
iterate given by the combination of lfsu and x. In our case of a linear problem the
result does not depend on the current iterate. Moreover, the basis functions for the
test space are precomputed so we need not access them via lfsv. Note also that in
general the ansatz and test space might be different.

First thing we need is to get B−TT and store it into S:
const auto geo = eg.geometry ();
const auto S = geo.jacobianInverseTransposed(qp);

Next, | detBT | is retrieved from the geometry and the factor that is common to
all entries of the local stiffness matrix is computed:

RF factor = weight*geo.integrationElement(qp);

Now form the matrix of transformed gradients G = B−TT Ĝ and store it in grad:
double grad[dim][n] = {{0.0}}; // coordinate x #basisfct
for (int i=0; i<dim; i++) // rows of S

for (int k=0; k<dim; k++) // columns of S
for (int j=0; j<n; j++) // columns of gradhat

grad[i][j] += S[i][k] * gradhat[k][j];

24

The computations are arranged in such a way that the innermost loop has the
dimension number of basis functions. In 3d there are four basis functions and the
loop has a chance to get vectorized.

Now the local stiffness matrix AT = GTG (up to the factor | detBT |wd) is formed

double A[n][n] = {{0.0}};
for (int i=0; i<n; i++)

for (int k=0; k<dim; k++)
for (int j=0; j<n; j++)

A[i][j] += grad[k][i]*grad[k][j];

and stored in the results container (now multiplying with the common factor):

for (int i=0; i<n; i++)
for (int j=0; j<n; j++)

mat.accumulate(lfsu ,i,lfsu ,j,A[i][j]* factor);

Method alpha_volume

The method alpha_volume provides the element-local computations for the matrix-
free evaluation of a(uh, φi) for all test functions φi as given by Eq.(21). It has the
interface:

template <typename EG, typename LFSU , typename X,
typename LFSV , typename R>

void alpha_volume (const EG& eg, const LFSU& lfsu ,
const X& x, const LFSV& lfsv ,
R& r) const

Its arguments are: eg providing the wrapped codim 0 entity T , lfsu providing the
basis functions of the ansatz space, x providing the coefficients of the current iterate
of the finite element solution, lfsv providing the test functions and r a container
to store the result.

The computations are actually quite similar to those in jacobian_volume. In
particular, the computation of B−TT , | detBT | and G = B−TT Ĝ are the same.

Extracting the element local coefficients zT = RT z is done by:

double z_T[n];
for (int j=0; j<n; j++) z_T[j] = x(lfsu ,j); // read coeffs

Now we may compute ∇uh via GzT :

double graduh[dim] = {0.0};
for (int k=0; k<dim; k++) // rows of grad

for (int j=0; j<n; j++) // columns of grad
graduh[k] += grad[k][j]*z_T[j];

Finally, the result aT = GT∇uh is formed:

double a_T[n] = {0.0};
for (int k=0; k<dim; k++) // rows of grad

for (int j=0; j<n; j++)
a_T[j] += grad[k][j]* graduh[k];

25

and stored in the results container (while being multiplied with the common factor):

for (int i=0; i<n; i++)
r.accumulate(lfsv ,i,a_T[i]* factor);

Method jacobian_apply_volume

In the case of a nonlinear partial differential equation the finite element method
results in a weak form

uh ∈ Vh : r(uh, v) = α(uh, v)− λ(v) = 0 ∀v ∈ Vh

which is nonlinear in its first argument. Inserting the finite element basis results in
a nonlinear algebraic problem

R(z) = 0

with (R(z))i = r(FEh(z), φi) which is typically solved by Newton’s iteration or some
other iterative method. In case of Newton’s method, each step involves the solution
of a linear system of the form

J(z)w = R(z)

where (J(z))i,j = (∂R(z))i
∂zj

= ∂α(FEh(z),φi)
∂zj

is the Jacobian of the nonlinear map R.
Naturally, the nonlinear case also includes the linear case described in this tu-

torial by setting r(u, v) = a(u, v) − l(v). Then, due to the linearity of a in its first
argument, one can show that J(z) = A and

(J(z)w)i = (Aw)i = a(FEh(w), φi).

This is not true in the nonlinear case. There, the evaluation of the form α(FEh(w), φi)
and the application of the Jacobian Jw are different operations. Therefore, PDE-
Lab provides two functions with the application of the Jacobian implemented in
jacobian_apply_volume with the interface:

template <typename EG, typename LFSU , typename X,
typename LFSV , typename R>

void jacobian_apply_volume (const EG& eg, const LFSU& lfsu ,
const X& z, const LFSV& lfsv ,
R& r) const

Note, this is the same interface as for alpha_volume. Since our problem is linear,
Jacobian application is identical to bilinear form evaluation and therefore we may
just forward the call to the function alpha_volume:

alpha_volume(eg,lfsu ,z,lfsv ,r);

4.4 Running the Example

Now we can run the tutorial and look at the results. One may check that u(x) =∑d
i=1(x)2

i solves the PDE −∆u = −2d in d dimensions (in d = 1 this is not a
PDE but a two-point boundary value problem). So we provide the exact solution
as Dirichlet boundary data and set f = −2d.

The program can be run by typing

26

./ tutorial00

on the command line. It then produces some output on the console and a VTK file
with the extension .vtp on one space dimension and .vtu in two and three space
dimensions.

First, the program reports that it is run on one processor:

Parallel code run on 1 process(es)

Then the mesh file is read and some statistics about it are reported:

Reading 2d Gmsh grid ...
version 2.2 Gmsh file detected
file contains 133 nodes
file contains 268 elements
number of real vertices = 133
number of boundary elements = 36
number of elements = 228

Now an instance of a DUNE grid is created and refined the required number of
times:

Created serial ALUGrid <2,2,simplex ,nonconforming >.
Time for mesh refinement 0.011566 seconds

Next, Dirichlet boundary constraints are evaluated and statistics are reported:

constrained dofs =288 of 7441

Now the matrix and right hand side are set up:

=== matrix setup (max) 0.013918 s
=== matrix assembly (max) 0.012634 s
=== residual assembly (max) 0.009034 s

The solver is started, in this case using the conjugate gradient method with an
algebraic multigrid preconditioner. This preconditioner needs a set up phase which
produces the following output:

=== solving (reduction: 1e-10)
Using a direct coarse solver (UMFPACK)
Building hierarchy of 2 levels (inclusive coarse solver) took
0.022688 seconds.

Finally, the solver prints some statistics about the convergence:

=== CGSolver
12 1.9016e-09

=== rate =0.144679 , T=0.021999 , TIT =0.00183325 , IT=12
0.044764 s

Figure 4 shows the finite element solution uh as well as the absolute error |u−uh|
for the 2d problem with the exact solution u(x, y) = x2 + y2. The largest error is
obtained in the vertices of the coarse mesh.

27

Figure 4: Finite element solution uh (left) and absolute error |u − uh| (right) visu-
alized as surface for a two-dimensional simulation.

5 Outlook
The interested reader can proceed in different directions from here. The more obvi-
ous things are:

• Run the problem on various levels of refinement and determine the maximum
error. The maximum error should behave like O(h2) with the mesh size.

• Try a different solution, like u(x, y) = x3 +y3, change the program accordingly
and study the error with respect to mesh refinement.

• Replace the algebraic multigrid preconditioner with a different one, e.g. the
BiCGStab method with SSOR preconditioner:

typedef Dune:: PDELab :: ISTLBackend_SEQ_BCGS_SSOR LS;
LS ls(5000, true);

Other, more involved options which will be covered in further tutorials are:

• Implementation of Neumann type boundary conditions involving boundary
integrals.

• Extension of the finite element method to cube elements using multi-linear
basis functions.

• Extension of the finite element method to higher order polynomials.

28

References
[1] P. Bastian. Lecture notes on scientific computing with partial differential equa-

tions. https://conan.iwr.uni-heidelberg.de/data/teaching/finiteelements_
ws2017/num2.pdf, 2014.

[2] D. Braess. Finite Elemente. Springer, 3rd edition, 2003.

[3] S. C. Brenner and L. R. Scott. The mathematical theory of finite element
methods. Springer, 1994.

[4] P. G. Ciarlet. The finite element method for elliptic problems. Classics in
Applied Mathematics. SIAM, 2002.

[5] H. Elman, D. Silvester, and A. Wathen. Finite Elements and Fast Iterative
Solvers. Oxford University Press, 2005.

[6] K. Eriksson, D. Estep, P. Hansbo, and C. Johnson. Computational Differential
Equations. Cambridge University Press, 1996. http://www.csc.kth.se/~jjan/
transfer/cde.pdf.

[7] A. Ern and J.-L. Guermond. Theory and practice of finite element methods.
Springer, 2004.

[8] Christophe Geuzaine and Jean-François Remacle. Gmsh: A 3-d finite element
mesh generator with built-in pre- and post-processing facilities. International
Journal for Numerical Methods in Engineering, 79(11):1309–1331, 2009.

[9] C. Großmann and H.-G. Roos. Numerische Behandlung partieller Differential-
gleichungen. Teubner, 2006.

[10] W. Hackbusch. Theorie und Numerik elliptischer Differentialgleichungen. Teub-
ner, 1986. http://www.mis.mpg.de/preprints/ln/lecturenote-2805.pdf.

[11] R. Rannacher. Einführung in die Numerische Mathematik II (Numerik
partieller differentialgleichungen). http://numerik.iwr.uni-heidelberg.de/
~lehre/notes, 2006.

29

https://conan.iwr.uni-heidelberg.de/data/teaching/finiteelements_ws2017/num2.pdf
https://conan.iwr.uni-heidelberg.de/data/teaching/finiteelements_ws2017/num2.pdf
http://www.csc.kth.se/~jjan/transfer/cde.pdf
http://www.csc.kth.se/~jjan/transfer/cde.pdf
http://www.mis.mpg.de/preprints/ln/lecturenote-2805.pdf
http://numerik.iwr.uni-heidelberg.de/~lehre/notes
http://numerik.iwr.uni-heidelberg.de/~lehre/notes

	Introduction
	Problem Formulation
	Strong Formulation
	Weak Formulation

	The Finite Element Method
	Finite Element Mesh
	Piecewise Linear Finite Element Functions
	Finite Element Solution
	Implementation of the Solution Steps

	Realization in PDELab
	Function main
	Function driver
	Local Operator PoissonP1
	Running the Example

	Outlook

