DUNE PDELab Tutorial 01

Conforming FEM for a Nonlinear Poisson Equation

Speaker:

Peter Bastian
IWR
Heidelberg University

,wawm,(aabead

1) Solving a nonlinear stationary PDE
2) Using conforming finite element spaces of arbitrary order T‘MRG(WN“‘QS’
3) Using different types of (conforming) meshes (simplicial and cubed)

- ’MMWQL J&Cbe'\PM—
- Mo Fuuske Seank “0-@5
— Nusaancod_ WW
This tutorial extends on tutorial 00 by > Use dierak ?vfd

4) Using different types of boundary condltlons
At foa.,e ovae;%r

PDE Problem

We consider the problem

—Au+q(u)="f in Q, (1a)
u=g on ['p C 09, (1b)
—Vu-v=j on 'y =00\ Tp. (1c)
oV
» g:R — R a nonlinear function
> f:Q — R the source term N
> g:Q — R a function for Dirichlet boundary conditions on I'p) 1;,

» j: Ty — R a function for Neumann (flux) boundary conditions

> v: unit outer normal to the domain

Weak Formulation

now reads as follows:

Findue Ust: MNPuv)=0 vveV,

with the continuous residual form S Juv s = _(/45 +f’aw’ls

NP (u, v):/Vu~Vv+(q()—f)vdx+ deS

Q A
and the function spaces e H'OV
> U={veHYQ): “v=g"onTlp} (affine space) = |, /“Q}-l- \/

> V={ve H{(Q): “v=0"onTp}

We assume that this problem has a unique solution

Algebraic Problem

= Solve weak formulation in finite-dimensional setting

"
Up = span{o1,...,¢n} +upg, Vp= span{*, . 74Dn}

Expanding up = up g + > 7 1(2);¢; results in an algebraic equation for z € R":
Find up € U s.t.: r(up,v) =0 Vv € V
& r (uh,g + i(z)j¢j,(#) =0
j=
& R(z) =0, %

fr.l
with R : R” — R" and R(z) = & (ung + XJ_1(2)i,)

Note: We remark on the realization of Dirichlet conditions below

Solution of Algebraic Problem

Use iterative methods to solve R(z) = 0. Fixed point iteration reads:

2k — G2y = 20 — Xk w (200 R(2(K)). (3)
2= G®)
» M\ € Ris a damping factor

» W(z(¥)) is a preconditioner matrix, e.g. in Newton's method one uses
a "l ELAWK A0~
qo\ v

W) = (J(z1))"1 where (J(zM));; =

i.e. one needs to solve J (z(k)) w = R(z(K) per iteration
The following algorithmic building blocks are required:
i) residual evaluation R(z), £ nerset Nate..
ii) Jacobian evaluation J(z) (or an approximation of it),
iii) alternatively: matrix-free Jacobian application J(z)w (or an approximation).

Note on Matrix-free Evaluation
R.@)

Nonlinear case:
n

——
J@w)i =D (J(@)ijw); = aaz_f (Uh,g +> (291, ¢i> (w);-
=194 =1

j=1
Linear case: r(u,v) = a(u,v) —I(v), a BLF, | LF

I_Za r(“hg"‘Z I¢/¢I)

0

— (a (uhg + Z /cb/,w,-) - /(¢i)> (w);

n 8 n n n
" 29z </1(Z)/%?ﬂ)> (w); —J; a(¢j, Yi)(w); = a @(/w_)f,,%)

"‘j Wx\e (Ag'

Qv

Recall Finite Element Mesh Notation

i) Ordered sets of vertices and elements:
Xp={x,-...,xn}y Th=A{T1,..., Tu}
ii) Partitioning of vertex index set Z, = {1,..., N} into Zp = Zi" U 7P
It ={icTy xcQ}, I*={icTy: xcoQ}.

&

iii) For every element T € 7 a local-to-global map

8T - {0,...,!77'-].}-)1/,
(ow)
iv) For every element T € Tj, an element transformation map

UT : ToT
o\ e
w1 is differentiable with invertible Jacobian and consistent with gt

Vi e {0, e, NT — 1} : /LT()?,') = Xgr(i)

Conforming Finite Element Space

with polynomial degree k in dimension d on mesh 7j: ’\J’L(_O‘) = /“2")
watke a A “1 A5
ﬁ,@zuab-* Vk’d(’ﬁ,) = {v € CO(Q) YT €Th:vlt =p1 o,uT1 NPT €]P”f,x’d}
ngece
where the multivariate polynomials IP depend on element type:

pop(xt,...,xd)= D>, Caxqt -...-xjd} T=5 (simplex),
phd _ o<lali<k
49—
p:pxa,...,xqg) = 0<”% <kcaxf‘1 o ~x§‘d} T = C (cube)
== 22 o 1
The dimension of P?d is: g , 1%)
X4 Yaky X7
1 k=0vd=0 % %#g
k ,d k,d __ . X
ng® = (k+ 1)9 (cube) , ngt =1{ & S (simpley

0

i

Local Lagrange Basis G- (o)=

3.(0- 3
’ 3 (2)=307

ponnom|a| degree 4, nA =15

(0,0) o= "(1 0)
Lagrange points and polynomials (shape functions) on T
L?-:{AOT7 X—Il:d 1}, P?-:{AOT, .’ﬁ)r_lll;‘d—l}
T T
such that o A =y
AT o T -
bi (%)Zéi,j'y\o .

Extend local to global map:

gT: {0,...,n?d—1}%l',lf’d= {0,,..,dimV,f’d(77,)—1}

Global Lagrange Basis

Gr (=4, 3=t

C(i) = {(T1, m), (T2, n)}

Define inversion of the local-to-global map:
C(i)={(T,m)eTpxN : gr(m) =i}
then the global Lagrange basis functions are
AT -1 .
bi(x) = { gl(ur (N xThgrm=i cgea
else

corresponding to the global Lagrange points

9 = (g €@ < = pr(R]) A gr(m) = 7}

10

Dirichlet Boundary Conditions |

Indices of Lagrange points on the Dirichlet boundary are:
Ik = {ie 1 e xf9nTp}.
Then the test space with zero Dirichlet condition is:
Vs (Ta) = {v € Vi9(Ta) = v(x) =0 vie 7k}

For the trial space choose any extension
%A . D,k,d
\,/Q 2 Uhg = Z g(xi)di, so upg(xi) = g(xi) Vi € ;)"
iezpd
Then the trial spaee is

Uk (Th) = {u EVEUTY) - u=upg+wAwe v,ﬁg’(m} = Ung + V5 (Th)

11

Dirichlet Boundary Conditions Il

There are different options to realize Dirichlet conditions in practice:
1. Elimination of all Dirichlet conditions from the algebraic systems, i.e.

R:R™ — R™, ng = dim (Vlﬁ,od(ﬁ)) 7 Ri(z) =R (“h,g + Z(Z)j¢j,¢,’)
=1

2. Keep degrees of freedom at Dirichlet boundary in the algebraic system, i.e.
RIR" R, n=dim(Vi(T) o
with additional equations
zi = g(x;), Vi e IhD’k’d

This approach is used in PDELab
3. Nitsche's method: Essential boundary conditions are not built into the function
space, instead certain terms are added to the weak formulation

12

General Constraints

Dirichlet boundary conditions are a special case of the following
Task: Given V), = span{¢; : j € Jy = {1,...,n}} construct a subspace V, C V,,

This is how it is done in PDELab:
1) Assume Vj, =span{¢; : i € Jp}
2) Select a subset of indices jh C Jn, dim(];,) is the dimension of the subspace \7;,
3) Set Vj, = span {qgj L jE .7;,} where the new basis functions have the form

=i+ >, (Bt Vi€

/EJh\jh

Any such subspace is thus characterized by C = (Jy, B)
PDELab implements general constraints in this way, e.g. for so-called hanging nodes

13

Element-wise Computations

Now return to the evaluation of the residual form, which is element-wise

M) = Y a¥un)+ Y AW+ Y ARW)

T€Th T€Th FeFd®
with
ol Volrune A= veliue A- ‘Dowwlma
oY (u,v) = / Vu-Vv+q(u)vdx, AY(v)= —/ frdx, ME(v)= / Jjvds
T T FAly
FJS: intersections of elements with the domain boundary, i.e.
F=TFNoQ A

with Tz € Tp, the "minus” element associated with F (see tutorial 2)

14

A Volume Term

For any (T, m) € C(i) we obtain

N0 = = [Fordx == [Fur(2)ph(%)/detr ()] d.

J,.; is the Jacobian of the element map ur
This integral is computed using numerical quadrature

Collect all contributions of T in a small vector:

(C¥)m == [Far(3)PR(R)Idetr ()] o5

15

A Boundary Term

For F € F* with F C Ty and (T, m) € C(i) we obtain

AB(¢,)_/J+ds_/ 20)b (ne(%)),/Idet (U] () r (5))] ds

The integration is more involved here because it is over a face:

> LF F — F maps the reference element of the face to the face

> nE F— 7A',_? maps reference element of the face to the reference element of T,

Collect all contributions of F in a small vector:
. ANy AT o ~ ~ 3 (¢
(€80 = f e GORER) lf, (5) o ()] 05 2 T

Numerical quadrature is applied to compute the integral

16

a Volume Term
For any (T, m) € C(i) we get
oY (un, &) = [Tu- Y6+ a(u)o dx.
= / Z j (Vs - Vi) + (;(),<z>,)¢ dx,
A Z 2)gr (T R)VB] () - (TR0 ¥B(5)
+q (Z(z)gr(n)ﬁf (%)) Pm(%)|dety ; (X)) dx

n

and again collect all contributions from T in a small vector RY¥(Rrz)

17

Putting It All Together

With these local contributions the evaluation of the algebraic residual is

= Y RIRY(Rrz)+ > RILY+ > RiLE

TeTh TETh FeFenr -bow
o= Velue Aevolna N A-bo %a

where Rt is the “picking out” matrix of element T
The Jacobian of R is

Vv
(s = g (2) = ARY)m

57 (Rrz2)
\‘Xchob icwx-\lo[m.-e _

(T,m,n):(T,m)eC(i)A(T,n)eC(j)
Note that:
i) Entries of the Jacobian can be computed element by element.
ii) The derivative is independent of the \-terms
iii) Jacobian entries may be computed by numerical differentiation

18

Implementation Overview

1)
2)

3)
4)
5)

6)

tutorialOl.ini holds parameters controlling the execution

tutorialOl.cc includes the necessary C++, DUNE and PDELab header files;
contains main function calling driver

Function driver in driver.hh instantiates the necessary PDELab classes for
solving a nonlinear stationary problem and finally solves the problem.

File nonlinearpoissonfem.hh contains class NonlinearPoissonFEM realizing a
PDELab local operator

File problem.hh contains a “parameter class” which encapsulates the
user-definable part of the PDE problem

Finally, the tutorial provides some mesh files.

19

