DUNE PDELab Tutorial 09

Using Code Generation to Create Local Operators

Speaker:

PDELab Team
IWR
Heidelberg University

Contents

Introduction

Introduction

We will look at a quick example to get some idea how this looks like.

Hello World: Poisson Problem

» Strong formulation:

—Au=f in Q,
u=g on 09,

» Discrete weak formulation: Find u, € Uj with
r,f’Oisso"(uh, Vh) = / Vup-Vv,dx — / fvadx =0 Vv, € Vp
Q Q

» Parameter functions:

f(x)=—-2d
g(x) =I5

UFL file for Poisson Problem

Discrete weak formulation: Find u, € U, with

rﬁoisson(uh’ Vh) — / Vup-Vv,dx — / fvpdx =0 Vvp € Vj
Q Q

cell = triangle

V = FiniteElement ("CG", cell, 1)
u = TrialFunction (V)

v = TestFunction (V)

= 2
SpatialCoordinate (cell)
x[0]*x[0]+x[1]*xx[1]
—2xdim

-0 X o
3

.‘
\

= inner(grad(u), grad(v)) * dx \
— fxv * dx

dune—codegen specific
exact_solution = g
interpolate_expression = g
is_dirichlet =1

Introduction

Introduction

>
>
>

v

dune-codegen! is a seperate module
This tutorial gives a short introduction to using dune-codegen

dune-codegen uses code generation to solve PDEs. This is done by describing the
PDE in a domain-specific language (DSL) and generating C++ code for the local
integration kernels

We use UFL? as DSL
The generated code can be used in dune-pdelab

This makes it easier to use PDELab for your application

https://gitlab.dune-project.org/extensions/dune-codegen
2https://bitbucket.org/fenics-project /ufl

Goals of this Talk

Goals of this talk
» Explain how to write down PDEs in UFL
» Show how dune-codegen modifies/extends UFL

» Show how it is integrated into the build system

Before this we will
» Give a short overview over the workflow

» Talk about differences to other code generation approaches

Resources

This tutorial is partially based on
> “Code Generation for High Performance PDE Solvers on Modern Architectures”
by Dominic Kempf
» “Unified Form Language: A domain-specific language for weak formulations of
partial differential equations” M. S. Alnaes, A. Logg, K. B. @lgaard, M. E. Rognes
and G. N. Wells

» UFL documentation
https://fenics.readthedocs.io/projects/ufl/en/latest/index.html

https://fenics.readthedocs.io/projects/ufl/en/latest/index.html

Contents

The Big Picture

The Big Picture

> Research goals of dune-codegen:

» Generate high performance code

> Performance optimizations on intermediate representation
> Difference to other code generation approaches:

> Only generate local integration kernels and use framework around it
» The workflow is CMake and C++ driven and not controlled by Python
» Main focus on generating high performance code

Typical Workflow

» Have a dune module that depends on dune-codegen

> Write a UFL file describing the PDE

> Add a target in CMake (see build system part)

» Go to the build directory and type make

» dune-codegen will generate the localoperator including the jacobian methods
>

After generating the localoperator CMake will compile your executable

10

Form Compiler Approach

Mathematical problem

PDE problem in residual formulation

-

|

Numerics

UFL Hardware

Python formulation in domain specific language

Basis structure

Polynomial

Degree

!

preprocessed UFL Multithreading
Apply preprocessing from

UFL with custom extensions

Memory
bandwidth

il

loo.py: intermediate representation
of the loop nest for the PDE kernel

transformatigns

Dune High-

level Backend

to grid, geometry and basis

Vectorization Backend

C++ PDELab code S

LocalOperator, driver and parameter class

intrisics wrapper

I

Automated analysis and profiling

of compiled source

11

Contents

Hello World: Poisson

12

UFL: Poisson

Discrete weak formulation: Find u, € U, with

rﬁoisson(uh’ Vh) — / Vup-Vv,dx — / fvpdx =0 Vvp € Vj
Q Q

cell = triangle
V = FiniteElement ("CG", cell, 1)
u = TrialFunction (V)

v = TestFunction (V)

dim = 2

x = SpatialCoordinate(cell)
g = x[0]*x[0]+x[1]*x[1]

f = —2xdim

.‘
\

= inner(grad(u), grad(v)) * dx \
— fxv * dx

dune—codegen specific
exact_solution = g
interpolate_expression = g
is_dirichlet =1

UFL:

vvyyypy

v

About

Domain specific language for describing weak formulations of PDE discretizations
Notation stays close to mathematical formulation

Embedded in Python

Only desribes cell /facet local computations. There is no notion of a grid or a
description of an element loop

The form is described by an abstract syntax trees (AST)

UFL can apply transformation on the AST e.g.:

» Calculation of the Jacobian of the residual
> Geometry lowering

14

UFL: AST

The weak formulation was:

rff’oisson(u’ v) = (Vu, VV)o,Q — (—2dim, V)O,Q

Product
R IL R
IntVa.lue(-l)‘ Product ‘ Grad ‘ ‘ Grad ‘
R
IntValue(-4) ‘ ‘ Argument(0, None) ‘ Coefficient(0) ‘

15

UFL: AST - Preprocessed

ge. 1. din=2), 1))

Mulitsdex(index(1)

.. dm2.) | |

16

UFL: File

Next step: Break down content of UFL file

cell = triangle
V = FiniteElement ("CG", cell, 1)
u = TrialFunction (V)

v TestFunction (V)

dim = 2

x = SpatialCoordinate(cell)
g = x[0]*x[0]+x[1]*x[1]

f = —2xdim

.‘
[

= inner(grad(u), grad(v)) * dx \
— fxv *x dx

dune—codegen specific
exact_solution = g
interpolate_expression = g
is_dirichlet =1

17

UFL: FiniteElement

cell = triangle
V = FiniteElement ("CG", cell, 1)

> family: String representing a finite element family

> 'CcG' Continuous Lagrange finite element
> 'DG' Discontinuous Galerkin Lagrange finite element

Dimension Simplex Cell Cube Cell
0 vertex vertex
» Possible Cells: 1 interval interval
2 triangle quadrilateral
3 tetrahedron hexahedron

P Instead you can also write Cell('triangle")

» degree: Polynomial degree

18

UFL:

vy

TrialFunction and TestFunction

TrialFunction (V)
TestFunction (V)

TrialFunction and TestFunction represent finite element functions.
Take FiniteElement as argument

Note: The mathematical residual will always be linear in the test function but
might be nonlinear in the ansatz function

19

UFL: Defining Expressions

dim = 2

x = SpatialCoordinate(cell)
g = x[0]*x[0]+x[1]*x[1]

f = —2xdim

.‘
Il

inner(grad(u), grad(v)) * dx \
— f*v x dx

P> SpatialCoordinate: Global coordinate
» grad(u): Gradient of u

» inner(A,B): Inner product
A:B= Z e Z AiO"‘in—lBiO"'in—l
io in—1

P dx: Multiplication with dx indicates a volume integral

20

UFL: Form

» Integrals (and sums of integrals) are called forms

» UFL expresses forms

a Wix---xWpxVix---xV,—-R

(Wi, oy Wiy Vi, ooy Vi) = a(w, ..
P Linear in the arguments vy,..., v,
» Possibly nonlinear in coefficient functions wy,..., wn,

v

PDELab uses a residual formulation: Find u € U with
r(u,v) =0 YveV

P ris linear in v but might be nonlinear in u

s Wi Ve, ..

2 Vn)

21

UFL: dune-codegen Specific

dune—codegen specific
exact_solution = g
interpolate_expression = g
is_dirichlet = 1

>
>

Main goal of dune-codegen is to generate the local integration kernel

For testing and solving simple problem an automated driver can be generated. For
the correct handling of the boundary condition we need to add some information
to the UFL file

exact_solution: Can be set for writing tests if solution is known

is_dirichlet: Expression that may depend on x and returns 1 if this is a
dirichlet boundary condition. This is used only for driver generation.

interpolate_expression: This is used as Dirichlet boundary value

22

UFL: Poisson

One last time the complete UFL file:

cell = triangle
V = FiniteElement ("CG", cell, 1)
u = TrialFunction (V)

v TestFunction (V)

dim = 2

x = SpatialCoordinate(cell)
g = x[0]*x[0]+x[1]*x[1]

f = —2xdim

.‘
[

= inner(grad(u), grad(v)) * dx \
— fxv *x dx

dune—codegen specific
exact_solution = g
interpolate_expression = g
is_dirichlet =1

23

Contents

UFL: Towards More Complex Forms

24

UFL: Towards More Complex Forms

In the following we show some important features of UFL. This is by no means
complete, see the official documentation for further details
https://fenics.readthedocs.io/projects/ufl/en/latest/index.html.

25

https://fenics.readthedocs.io/projects/ufl/en/latest/index.html

UFL: Math Expressions

v

» Comparison operator: eq, ne, le, ge, 1t and gt

v

Conditionals:

A cond is True

conditional(cond, A, B) =
T (r A B) { B cond is False

» Vector-, matrix- and tensor-valued objects can be created through as_vector,
as_matrix and as_tensor

a = as_matrix([[1.0, 2.0],[3.0, 4.011)

> See the official documentation for tensor algebra operations

Math functions, e.g. *, /, +, -, abs, exp, 1n, sqrt, trigonometric functions, ...

26

UFL: Geometric Quantities

> SpatialCoordinate(cell): Global coordinate
> FacetNormal(cell): Unit outer normal vector

» CellVolume(cell) and FacetArea(cell)

27

UFL:

vVvyyYyyvyy

Integral Measures

Multiplication with a measure describes an integral object over a local cell or facet
dx: Integral over cell

ds: Integral over boundary facet

ds: Integral over interior facet

Measures can be restricted to a subdomain. See the example about mixed
Dirichlet and Neumann conditions on the next slides

28

Example: Mixed Boundary Conditions

Strong formulation:
—Au+q(u)y="f in Q,
u=g on p C 09,
—Vu-v=j on 'y C 0N

Weak discrete formulation: Find u, € Up, with

rllvaP(Uh,Vh):/VUh‘VVth-l‘/q(u)vdx
Q Q

—/fvhdx+/jvds:0 Yvp € Vi
Q Ty

Parameter functions:

29

Example: Mixed Boundary Conditions

FiniteElement ("CG", triangle , 1)
TrialFunction (V)
TestFunction (V)

o
i

x = SpatialCoordinate(triangle)
dim = 2

eta = 2

g = x[0]*x[0]+x[1]*x[1]

f = —2xdim+etaxgxg

def q(u):
return etaxuxu

Decide where to apply which boundary

0: Neumann

1: Dirichlet

bctype = conditional (Or(x[0]<1le—8, x[0]>1.—1e—8), 0, 1)
sgn = conditional (x[0] > 0.5, 1., —1.)

j = —2.xsgnxx[0]

Define the boundary measure that knows where we are...
ds = ds(subdomain_data=bctype)

r = inner(grad(u), grad(v))*dx + q(u)*vkdx — fxvkdx + jxvkds(0)

exact_solution = g
is_dirichlet = bctype
interpolate_expression = g

30

UFL:

DG Operators

UFL provides operators for implementation of Discontinuous Galerkin (DG) methods.
These methods are discontinuous at interior facets. This means you have two values
there: One for the 'inside’ cell and one for the 'outside’ cell.

>
>
>

avg(u): Average between those values (u|7+ + u|7-)

jump(u): Difference between the values u|r+ — u| -

Restriction: Expression can be restricted to the inside or the outside cell by typing
u('+')yoru('-")

Note: UFL denotes the inside cell with “4" and the outside cell with “-
stick to this convention for dune-codegen. In the literature this is usually done the
other way round.

' s0 we

We will see an example on the exercise sheet.

31

UFL: FiniteElement

VectorElement
V= VectorElement(family, cell, degree|, size])

» Combination of a basic element for a vector field
> family, cell, degree like FiniteElement above
> size: Optional, default equal to dimension

TensorElement
V = TensorElement(family, cell, degree[, shape, symmetry])

> Like VectorElement but for shape given as tuple

» Symmetry can be expressed as Python dictionary symmetry={(0,1):

MixedElement
V = MixedElement(elementl, element2],...])

> Arbitrary combination of finite elements
» Can also be created like this V = elementl*element2

(1,0)}

32

UFL: Trialfunctions and Testfunctions

> You can get the test- and trialfunctions of these spaces using the split command

FE_V = VectorElement ('CG', triangle, 2)
FE_P = FiniteElement ('CG', triangle, 1)
TH = FE_V * FE_P

u, p= split(TrialFunction(TH))

v, q = split(TestFunction(TH))

» There is also an abbreviation (don't miss the additional s)

u, p= TrialFunctions(TH)
v, q = TestFunctions(TH)

Example: Wave Equation as First Order System

Strong formulation as first order system:

8tu1—c2Au0:0 in QxX,
Otug —up =0 in QxX,
up =20 on 09,
u =0 on 092,
up = q att =0,
u=w at t = 0.

Weak discrete formulation: Find (ug(t), u1(t)) € Up x Us s.t.

dt(ul, Vo)on + Cz(VUO, VVO)O’Q =0 Vv el
di(uo, vi)o, — (U1, vi)oo =0 Vvi € Uy

Parameters: Speed of sound ¢ =1

Example: Wave Equation as First Order System

dt(ul, Vo)on -+ C2(VUO7 VVO)O’Q =0 Vv el
d(uo, v1)o,0 — (U1, vi)o,a =0 Vvi € Uy

cell = quadrilateral

V = VectorElement ("CG", cell, 1)
u0, ul = TrialFunctions (V)

v0, vl = TestFunctions (V)
c=1.0

mass = inner(ul, v0) % dx \
+ inner(u0, vl) = dx

r = cx*2 * inner(grad(u0), grad(v0)) * dx \
— inner(ul, vl) x dx

35

UFL:

| 2
>
>
>
>

Derivatives

grad(u): Gradient of u

div(u): Divergence of u

curl(u): Curl of u (only for finite element functions with three components)
u.dx(d): D’th partial derivative g—;;

UFL can also compute derivatives of forms or expressions wrt to Variables or
Coefficients (Note: In dune-codegen the TrialFunction is a Coefficient)

Define arbitrary expression
u = Coefficient(element)
w = sin (u*%2)

Annotate expression w as a variable that can be used by 'diff'
w = variable (w)

Derivative of expression F
F = wxx2

dF_w = diff(F, w)

dF_u = diff(F, u)

36

UFL: dune-codegen Specific

» As mentioned before dune-codegen uses the residual formulation. The provided
residual form may be nonlinear in the trial function.’

» Your UFL file may contain multiple forms. dune-codegen will generate local
operators for all forms listed in the ini file, eg
[formcompiler]

operators = mass, poisson

> See the build system part of this tutorial for more options!

3In our case the trialfunction is a Coefficient and not an Argument.

37

UFL: dune-codegen Specific

> For testing automated drivers can be generated. We use the following convention
for instationary problems: If there are exactly two forms and one is called mass we
assume that the problem is instationary and generate a suitable driver.*

> Instationary problems can have time dependent parameters but UFL has no notion
of time. In dune-codegen you can get a variable representing the time by

t = get_time(cell)

*Keep in mind that dune-codegen was developed to generate local operator. The driver generation
was mainly done for testing.

38

Example: Heatequation

cell = quadrilateral

x = SpatialCoordinate(cell)
time = get_time(cell)

g = cos(2«pi*xtime)*xcos(pi*x[0])**x2%cos(pi*x[1])*x2

V = FiniteElement ("CG", cell, 1)
u = TrialFunction (V)

v = TestFunction (V)

mass = (u*v)*dx

poisson = inner(grad(u), grad(v))=*dx

interpolate_expression = g
is_dirichlet =1

39

Contents

Build System Integration

40

CMake: dune_add_generated_executable

vvyyypy

We need to generate C++ code and compile it

Add a code generation target to your CMakeLists. txt

dune_add_generated_executable(
UFLFILE uflfile
INIFILE inifile
TARGET target
[SOURCE source]
)

UFLFILE: UFL file describing the PDE
INIFILE: Ini file with code generation option under [formcompiler] section
TARGET: Name of the executable

SOURCE: C++ file used for building the target. This is optional, if omitted a
minimal driver willl be generated

41

CMake: dune_add_generated_executable

> Automated driver generation was mainly developed for automated software tests

» For complicated applications handwritten drivers will be necessary. This requires
control over the file- and classname of the generated local operator.

» Can be done in the ini file

[formcompiler]
operators = r

[formcompiler.r]
filename = r_operator.hh
classname = ROperator

42

Ini File: [formcompiler] Options

> Put into the [formcompiler] section

> operators: Comma separated list of form names for which we want to generate
operators [default r]. Example:
[formcompiler]
operators = mass, poisson

> explicit_time_stepping: Use explicit time stepping (in instationary case)
[0/1, default 0]. Example:

43

Ini File: Form Options under [formcompiler.formname]

vvyyypy

v

Options for a form called r need to be put into the [formcompiler.r] section
filename: Name of the generated local operator file [str, optional]
classname: Name of the local operator class [str, optional]

numerical_jacobian: Use numerical differentiation for assembling the Jacobian
of the residual [0/1, default 0]

quadrature_order: Order of quadrature
[int>0,],optional, guessed by UFL if omitted)

geometry_mixins: Information about grid properties that can lead to simplified
gemometry evaluations [generic/axiparallel/equidistant]

a

Ini File: Options for Generated Driver

Grid generation
> Grid generation options are at the top under no section
» Quadrilateral grid

cells = 32 32
extension = 1. 1.

» Simplex grid
lowerleft = 0.0 0.0
upperright = 1.0 1.0
elements = 32 32
elementType = simplical

» Gmsh grid

gmshFile = cylinder2dmeshl.msh

45

Ini File: Options for Generated Driver

Name of vtk output
» Under section [wrapper.vtkcompare]

» name: Basename (without ending) of vtk output

Parameters for Instationary problems
> Need to be put into the [instat] section
> T: End of time intervall
> dt: Time step size
> output_every_nth: Write visualization output for every nth time step

46

CMake: Example Heatequation

cell = quadrilateral

x = SpatialCoordinate(cell)
time = get_time(cell)

V = FiniteElement ("CG", cell, 1)
u = TrialFunction (V)
v = TestFunction (V)

mass = (uxv)*dx
poisson = inner(grad(u), grad(v))xdx

This example uses a hand written driver so these ar
g = cos(2xpixtime)xcos(pixx[0])**2xcos(pi*x[1])x*2
interpolate_expression = g

is_dirichlet =1

CMakeLists.txt

dune_add_generated_executable(TARGET heatequation
UFLFILE heatequation.ufl
INIFILE heatequation.ini
SOURCE heatequation_driver.cc
)

dune_symlink_to_source_files(FILES heatequation.ini)

not needed!

a7

CMake: Example Heatequation

heatequation.ini
cells = 32 32
extension = 1. 1.

[wrapper.vtkcompare]
name = heatequation

[instat]
T=1
dt = 0.01

output_every_nth = 5

[formcompiler]
operators = mass, poisson
explicit_time_stepping = 0

[formcompiler.mass]

filename = heatequation_mass_operator.hh
classname = MassOperator

geometry mixins = equidistant

[formcompiler.poisson]

filename = heatequation_poisson_operator.hh
classname = PoissonOperator

geometry_mixins = equidistant

48

Examples

In the folder tutorial09/src you can find several examples:
> Poisson equation from tutorial00
» Nonlinear Poisson equation with mixed boundary from tutorial01
» Heat equation from tutorial03
» Wave equation from tutorial04
In the exercises you will additionally find examples for:
> Navier Stokes equation modeling the flow around a cylinder from tutorial08

» Discontinuous Galerkin discretization of the Poisson equation

49

	Introduction
	The Big Picture
	Hello World: Poisson
	UFL: Towards More Complex Forms
	Build System Integration

