
DUNE PDELab Tutorial 02
Cell-Centered Finite Volume Method

DUNE/PDELab Team

February 5, 2021

Contents
1 Introduction 2

2 PDE Problem 2

3 Cell-centered Finite Volume Method 2

4 Realization in PDELab 5
4.1 Ini-File . 5
4.2 Function main . 6
4.3 Function driver . 6
4.4 The Problem Class . 7
4.5 Local Operator NonlinearPoissonFV 7
4.6 Running the Example . 15

5 Outlook 16

1

1 Introduction
This tutorial solves the same partial differential equation (PDE) as tutorial 01,
namely a nonlinear Poisson equation, with the following differences:

1) Implements a cell-centered finite volume method with two-point flux approxima-
tion as an example of a non-conforming scheme.

2) Implements all possible methods of a local operator.

Depends On

Tutorial 00 and 01.

2 PDE Problem
Consider the following nonlinear Poisson equation (the same as in tutorial 01) with
Dirichlet and Neumann boundary conditions:

−∆u+ q(u) = f in Ω, (1a)
u = g on ΓD ⊆ ∂Ω, (1b)

−∇u · ν = j on ΓN = ∂Ω \ ΓD. (1c)

Ω ⊂ Rd is a domain, q : R→ R is a given, possibly nonlinear function and f : Ω→ R
is the source term and ν denotes the unit outer normal to the domain.

3 Cell-centered Finite Volume Method
The application of the cell-centered finite volume method as presented here is re-
stricted to axiparallel meshes. We assume that the domain Ω is covered by a mesh
Th = {T1, . . . , TM} consisting of elements which are closed sets satisfying⋃

T∈Th

T = Ω, ∀T, T ′ ∈ Th, T 6= T ′ : T̊ ∩ T̊ ′ = ∅. (2)

In order to describe the method some further notation is needed. The nonempty
intersections F = T−F ∩ T

+
F of codimension 1 form the interior skeleton F ih =

{F1, . . . , FN}. Each intersection is equipped with a unit normal vector νF point-
ing from T−F to T+

F . The intersections of an element F = T−F ∩ ∂Ω with the domain
boundary form the set of boundary intersections F∂Ω

h = {F1, . . . , FL} which can be
further partitioned into Dirichlet boundary intersections FΓD

h and Neumann bound-
ary intersections FΓN

h . Each boundary intersection is equipped with a unit normal
vector νF which coincides with the unit outer normal to the domain. Furthermore,
xT , xF denotes the center point of an element or face. This notation is illustrated
graphically in Figure 1.

For the cell-centered finite volume method the discrete function space involved
is the space of piecewise constant functions on the mesh:

Wh = {w ∈ L2(Ω) : w|T = const for all T ∈ Th}.

2

T−F ′ , T
−
F T+

F

xT−
F ′
, xT−F

xT+
F

xF νF

F

xF ′

F ′

Figure 1: Illustration of quantities associated with elements and intersections.

In order to derive the residual form we proceed as follows: multiply equation (1)
with a test function v ∈ Wh, i.e. from the discrete space, and use integration by
parts:∫

Ω

fv dx =

∫
Ω

[−∆u+ q(u)]v dx

=
∑
T∈Th

v

∫
T

−∆u+ q(u) dx (v const on T)

=
∑
T∈Th

[∫
T

q(u)v dx−
∫
∂T

∇u · νv ds
]

(Gauss’ thm.)

=
∑
T∈Th

∫
T

q(u)v dx−
∑
F∈Fi

h

∫
F

∇u · νF
[
v(xT−F

)− v(xT+
F

)
]
ds

−
∑

F∈F∂Ω
h

∫
F

∇u · νF ds. (rearrange)

At this point, the normal derivative ∂νFu = ∇u · νF is approximated by a difference
quotient

∇u · νF =
uh(xT+

F
)− uh(xT−F)

‖xT+
F
− xT−F ‖

+ error

and all integrals are approximated by the midpoint rule∫
T

f dx = f(xT)|T |+ error

where |T | is the measure of T .
Put together the cell-centered finite volume method can be stated in its abstract

form suitable for implementation in PDELab:

Find uh ∈ Wh s.t.: rCCFV
h (uh, v) = 0 ∀v ∈ Wh (3)

3

where the residual form is

rCCFV
h (uh, v) =

∑
T∈Th

q(uh(xT))v(xT)|T | −
∑
T∈Th

f(xT)v(xT)|T |

−
∑
F∈Fi

h

uh(xT+
F

)− uh(xT−F)

‖xT+
F
− xT−F ‖

[
v(xT−F

)− v(xT+
F

)
]
|F |

+
∑

F∈F∂Ω
h ∩ΓD

uh(xT−F
)

‖xF − xT−F ‖
v(xT−F

)|F |

−
∑

F∈F∂Ω
h ∩ΓD

g(xF)

‖xF − xT−F ‖
v(xT−F

)|F |+
∑

F∈F∂Ω
h ∩ΓN

j(xF)v(xT−F
)|F |.

(4)

In this case five different types of integrals are involved in the residual form:

1. Volume integral depending on trial and test function.

2. Volume integral depending on test function only.

3. Interior intersection integral depending on trial and test function.

4. Boundary intersection integral depending on trial and test function.

5. Boundary intersection integral depending on test function only.

Also note that no constraints on the function space are necessary in this case. Dirich-
let as well as Neumann boundary conditions are built weakly into the residual form!

Finally, many types of discontinuous Galerkin finite element methods (DGFEM)
lead to the same five types of integrals and can be applied on general unstructured
conforming as well as nonconforming meshes.

General Residual Form

The residual form of the cell-centered finite volume method suggests that all residual
forms could be composed of five different types of terms in the following way:

r(u, v) =
∑
T∈Th

αVT (RTu,RTv) +
∑
T∈Th

λVT (RTv)

+
∑
F∈Fi

h

αSF (RT−F
u,RT+

F
u,RT−F

v,RT+
F
v)

+
∑

F∈F∂Ω
h

αBF (RT−F
u,RT−F

v) +
∑

F∈F∂Ω
h

λBF (RT−F
v).

(5)

Here, we define the restriction of a function u ∈ U to an element by

(RTu)(x) = u(x) ∀x ∈ T̊ .

Note that the restriction of a function to element T is only defined in the interior
of T . On interior intersections F , functions may be two-valued and limits from

4

within the elements T−F , T
+
F need to be defined (when U is the space of element-wise

constants that is trivial).
The five terms comprise volume integrals (superscript V), interior skeleton in-

tegrals (superscript S) and boundary integrals (superscript B). Furthermore, the
α-terms depend on trial and test functions whereas the λ-terms only depend on the
test function and involve the data of the PDE.

Each of the five terms αVT , αSF , αBF , λVT , λBF corresponds to one method on the
local operator. In addition to the evaluation of residuals also Jacobians and matrix-
free application of Jacobians are needed. This gives rise to in total 5 + 3 + 3 = 11
possible methods on a local operator given in the following table:

volume skeleton boundary
residual alpha_volume alpha_skeleton alpha_boundary

lambda_volume lambda_boundary
Jacobian jacobian_volume jacobian_skeleton jacobian_boundary
Jac. app. jacobian_apply_volume jacobian_apply_skeleton jacobian_apply_boundary

4 Realization in PDELab
The structure of the code is already known from the previous tutorials. It consists
of the following files:

1) The ini-file tutorial02.ini holds parameters read by various parts of the code
which control the execution.

2) The main file tutorial02.cc includes the necessary C++, DUNE and PDELab
header files and contains the main function where the execution starts. The
purpose of the main function is to instantiate DUNE grid objects and call the
driver function.

3) File driver.hh instantiates the necessary PDELab classes for solving a nonlinear
stationary problem with the cell-centered finite volume method and solves the
problem.

4) File nonlinearpoissonfv.hh contains the class NonlinearPoissonFV realizing
a PDELab local operator implementing the cell-centered finite volume method
on axi-parallel meshes.

5) File problem.hh contains a parameter class which encapsulates the user-definable
part of the PDE problem as introduced in tutorial 01.

4.1 Ini-File

The ini-file uses the same sections as in tutorial 01 with the following exceptions:

• Only the structured grid in its YaspGrid implementation can be used in di-
mension 2 and 3. OneDGrid is used in dimension 1.

• No degree can be chosen.

5

4.2 Function main

The function main is very similar to the one in tutorials 00 and 01 and need not be
repeated here.

4.3 Function driver

Also the function driver is very similar in structure to the one in tutorial 00 and
01. Here we just point out the differences. The cell-centered finite volume method
is based on the space of piecewise constant functions on the meshWh. The following
code segment constructs this function space using the class P0LocalFiniteElementMap:

// Make grid function space
typedef Dune:: PDELab :: P0LocalFiniteElementMap <DF,RF,dim > FEM;
FEM fem(Dune:: GeometryTypes ::cube(dim));
typedef Dune:: PDELab :: NoConstraints CON;
typedef Dune:: PDELab ::ISTL:: VectorBackend <> VBE;
typedef Dune:: PDELab :: GridFunctionSpace <GV,FEM ,CON ,VBE > GFS;
GFS gfs(gv,fem);
gfs.name("Q0");

The constraints class NoConstraints is used to express that there are no constraints
on the function space.

Now no constraints container type is exported by the grid function space. Instead
the class EmptyTransformation is used in the grid operator:

// Make a global operator
typedef Dune:: PDELab ::ISTL:: BCRSMatrixBackend <> MBE;
MBE mbe (2*dim +1); // guess nonzeros per row
typedef Dune:: PDELab :: EmptyTransformation CC;
typedef Dune:: PDELab :: GridOperator <

GFS ,GFS , /* ansatz and test space */
LOP , /* local operator */
MBE , /* matrix backend */
RF,RF,RF, /* domain , range , jacobian field type*/
CC,CC /* constraints for ansatz and test space */
> GO;

GO go(gfs ,gfs ,lop ,mbe);

Cell-wise data is passed to the VTKWriter using its method addCellData:

// Write VTK output file
Dune::VTKWriter <GV> vtkwriter(gv,Dune::VTK:: conforming);
typedef Dune:: PDELab :: VTKGridFunctionAdapter <ZDGF > VTKF;
vtkwriter.addCellData(std::shared_ptr <VTKF >(new

VTKF(zdgf ,"fesol")));
vtkwriter.write(ptree.get("output.filename","output"),

Dune::VTK:: appendedraw);

These are the only changes to the driver!

6

4.4 The Problem Class

The class NonlinearPoissonFV explained below uses the same problem class as
the class NonlinearPoissonFEM. This means that the same problem can be easily
solved using the two different methods.

4.5 Local Operator NonlinearPoissonFV

The class NonlinearPoissonFV implements the element-wise computations of the
cell-centered finite volume method. In particular, it provides a full implementation
of all possible methods on a local operator including analytic Jacobians. The class
has the problem class as a template parameter:

template <typename Param >
class NonlinearPoissonFV :

public Dune:: PDELab :: FullVolumePattern ,
public Dune:: PDELab :: FullSkeletonPattern ,
public Dune:: PDELab :: LocalOperatorDefaultFlags

The base class FullSkeletonPattern provides the local operator with a method
coupling all degrees of freedom of two elements sharing an intersection. In combi-
nation with FullVolumePattern this provides the sparsity pattern of the matrix.

The only private data member is a reference to an object to the parameter class:

Param& param; // parameter functions

The public section begins with a definition of flags controlling assembly of the
sparsity pattern

// pattern assembly flags
enum { doPatternVolume = true };
enum { doPatternSkeleton = true };

as well as element contributions:

// residual assembly flags
enum { doLambdaVolume = true };
enum { doLambdaBoundary = true };
enum { doAlphaVolume = true };
enum { doAlphaSkeleton = true };
enum { doAlphaBoundary = true };

These five flags specify that all five contributions will be provided.
The constructor just gets a reference of the parameter object:

NonlinearPoissonFV (Param& param_)

Method lambda_volume

This method was already present in the finite element method and corresponds to
sum number two on the right hand side of equation (4). The element contributions
for the cell-centered finite volume method are particularly simple to implement.
Here is the right hand side contribution:

7

template <typename EG, typename LFSV , typename R>
void lambda_volume (const EG& eg, const LFSV& lfsv ,

R& r) const
{

// center of reference element
auto cellgeo = eg.geometry ();
auto cellcenterlocal =

referenceElement(cellgeo). position (0,0);

// accumulate residual
auto f = param.f(eg.entity(), cellcenterlocal);
r.accumulate(lfsv ,0,-f*cellgeo.volume ());

}

The variable cellcenterlocal is filled with the center of the reference element.
Then the function f is evaluated and the integral is approximated with the midpoint
rule. To that end cellgeo.volume() provides the measure of the element.

Note that throughout the whole class we assume that the basis functions of the
space Wh are one on one element and zero on all others, i.e.

φi(x) =

{
1 x ∈ Ti
0 else . (6)

This means that basis functions will never be evaluated!

Method lambda_boundary

This method was also already present in the finite element method and corresponds
to sums five and six on the right hand side of equation (4). It assembles contributions
from Dirichlet and Neumann boundary conditions and has the interface

template <typename IG, typename LFSV , typename R>
void lambda_boundary (const IG& ig, const LFSV& lfsv_i ,

R& r_i) const

First the center of the reference element of the intersection is extracted and the
boundary condition type is evaluated:

// face volume for integration
auto facegeo = ig.geometry ();
auto facecenterlocal =

referenceElement(facegeo). position (0,0);

// evaluate boundary condition and quit on Dirichlet
bool isdirichlet =

param.b(ig.intersection (), facecenterlocal);

Now comes the part for the Dirichlet boundary conditions where we need to
compute the distance from the face center to the element center, the value of the
Dirichlet boundary condition and the measure of the face:

8

if (isdirichlet)
{

// inside cell center
auto insidecenterglobal=ig.inside (). geometry (). center ();

// face center in global coordinates
auto facecenterglobal = facegeo.center ();

// compute distance of these two points
insidecenterglobal -= facecenterglobal;
auto distance = insidecenterglobal.two_norm ();

// face center in local coordinates of the element
auto facecenterinelement=ig.geometryInInside (). center ();

// evaluate Dirichlet condition
auto g = param.g(ig.inside(), facecenterinelement);

// face volume for integration
auto face_volume = facegeo.volume ();

// contribution to residual
r_i.accumulate(lfsv_i ,0,-g/distance*face_volume);

}

The Neumann part is much simpler:

else
{

// contribution to residual from Neumann boundary
auto j = param.j(ig.intersection (), facecenterlocal);
r_i.accumulate(lfsv_i ,0,j*facegeo.volume ());

}

Method alpha_volume

Now alpha_volume has also been present before and corresponds to the first sum
on the right hand side of equation (4). Here it just contains the evaluation of the
reaction term with the midpoint rule:

template <typename EG, typename LFSU , typename X,
typename LFSV , typename R>

void alpha_volume (const EG& eg, const LFSU& lfsu , const X& x,
const LFSV& lfsv , R& r) const

{
// get cell value
auto u = x(lfsu ,0);

// evaluate reaction term
auto q = param.q(u);

9

// and accumulate
r.accumulate(lfsv ,0,q*eg.geometry (). volume ());

}

Method jacobian_volume

Now we come to the first method that has not been implemented in previous ex-
amples. The method jacobian_volume will assemble the entries of the Jacobian
coupling all degrees of the given element. As there is only one degree of freedom per
element there is only one matrix entry to assemble. The matrix entries are returned
in the container which is the last argument of the method:

template <typename EG, typename LFSU , typename X,
typename LFSV , typename M>

void jacobian_volume (const EG& eg, const LFSU& lfsu , const X& x,
const LFSV& lfsv , M& mat) const

First the derivative of the nonlinearity is evaluated

auto u = x(lfsu ,0);
auto qprime = param.qprime(u);

and the matrix entry is written into the container

mat.accumulate(lfsv ,0,lfsu ,0,qprime*eg.geometry (). volume ());

mat.accumulate has five arguments: the matrix row given by local test space and
number of the test function, the matrix column given by local trial space and number
of the trial function and, as last argument, the contribution to the matrix entry which
is added to the global Jacobian matrix.

Method jacobian_apply_volume

This method is very similar to the previous method except that it multiplies the
local Jacobian contribution immediately with a vector and accumulates the result.

The method has the following interface:

template <typename EG, typename LFSU , typename X,
typename LFSV , typename R>

void jacobian_apply_volume (const EG& eg, const LFSU& lfsu ,
const X& x, const X& z,
const LFSV& lfsv , R& r) const

x are the coefficients of the linearization point and z are the entries of the vector to
be multiplied with the Jacobian. The result is accumulated to the container r.

Here is the implementation:

// evaluate derivative reaction term
auto u = x(lfsu ,0);
auto qprime = param.qprime(u);

10

// and accumulate
r.accumulate(lfsv ,0,qprime*z(lfsu ,0)*eg.geometry (). volume ());

Comparison with jacobian_volume shows that the Jacobian entry is multiplied
with the entry of z.

Method alpha_skeleton

This is the major new method needed to implement the flux terms in finite volume
and discontinuous Galerkin methods. It has the following interface:

template <typename IG, typename LFSU , typename X,
typename LFSV , typename R>

void alpha_skeleton (const IG& ig,
const LFSU& lfsu_i , const X& x_i , const LFSV& lfsv_i ,
const LFSU& lfsu_o , const X& x_o , const LFSV& lfsv_o ,
R& r_i , R& r_o) const

The arguments comprise an intersection, local trial function and local test space
for both elements adjacent to the intersection and containers for the local residual
contributions in both elements. The subscripts _i and _o correspond to “inside”
and “outside”. W.r.t. our notation above in section 3 “inside” corresponds to “-” and
“outside” corresponds to “+”.

Note that alpha_skeleton needs to assemble residual contributions for all test
functions involved with both elements next to the intersection and corresponds to
sum number three on the right hand side of equation (4).

It starts by extracting the elements adjacent to the intersection
auto cell_inside = ig.inside ();
auto cell_outside = ig.outside ();

and then extracts their geometries
auto insidegeo = cell_inside.geometry ();
auto outsidegeo = cell_outside.geometry ();

and the centers
auto inside_global = insidegeo.center ();
auto outside_global = outsidegeo.center ();

Now the distance of the centers can be computed
inside_global -= outside_global;
auto distance = inside_global.two_norm ();

and the measure of the face is extracted
auto facegeo = ig.geometry ();
auto face_volume = facegeo.volume ();

which puts us in the position to accumulate the residual contributions
auto dudn = (x_o(lfsu_o ,0)-x_i(lfsu_i ,0))/ distance;
r_i.accumulate(lfsv_i ,0,-dudn*face_volume);
r_o.accumulate(lfsv_o ,0, dudn*face_volume);

11

In fact, the contribution to the inside element, i.e. to r_i is the flux from the inside
to the outside element. The contribution to the outside element residual is exactly
the negative value, i.e. we have local conservation.

Method jacobian_skeleton

In the computation of the Jacobian w.r.t. skeleton terms we can exploit the fact
that the discrete residual form is actually linear in these terms as the nonlinearity
is restricted to the volume term only.

An interior face contributes to four matrix parts of the global matrix as there
are test functions on the inside and outside elements (corresponding to rows in the
matrix) as well as trial functions on the inside and outside element (corresponding
to columns of the matrix). In the case of the cell-centered finite volume method for
the nonlinear Poisson equations there is only one degree of freedom and test function
per element, so there are four matrix entries which the face contributes. In case of
higher order discontinuous Galerkin schemes and/or systems of PDEs there are four
blocks of the matrix where the face contributes to. The following figure illustrates
the matrix structure and the corresponding submatrices. For ease of drawing it is
assumed that all trial and test functions of one element are numbered consecutively
but this need not be the case!

Ti

To

Ti To

mii mio

moi moo

Figure 2: Matrix block contributions computed by jacobian_skeleton.

The method has the following interface:

template <typename IG, typename LFSU , typename X,
typename LFSV , typename M>

void jacobian_skeleton (const IG& ig,
const LFSU& lfsu_i , const X& x_i , const LFSV& lfsv_i ,
const LFSU& lfsu_o , const X& x_o , const LFSV& lfsv_o ,
M& mat_ii , M& mat_io ,
M& mat_oi , M& mat_oo) const

12

It is very similar to alpha_skeleton except that four containers are passed where
the matrix entries of the four blocks need to be stored.

The computation of distance of cell centers and the face volume are exactly the
same as in alpha_skeleton. Then the matrix entries are given by:

// contribution to jacobian entries
mat_ii.accumulate(lfsv_i ,0,lfsv_i ,0, face_volume/distance);
mat_io.accumulate(lfsv_i ,0,lfsv_o ,0,-face_volume/distance);
mat_oi.accumulate(lfsv_o ,0,lfsv_i ,0,-face_volume/distance);
mat_oo.accumulate(lfsv_o ,0,lfsv_o ,0, face_volume/distance);

Method jacobian_apply_skeleton

The jacobian_apply_skeleton method needs to compute the local Jacobian con-
tributions and multiply them with a given coefficient vector. It has the following
interface

template <typename IG, typename LFSU , typename X, typename LFSV ,
typename Y>

void jacobian_apply_skeleton
(const IG& ig,

const LFSU& lfsu_i , const X& x_i , const X& z_i , const LFSV& lfsv_i ,
const LFSU& lfsu_o , const X& x_o , const X& z_o , const LFSV& lfsv_o ,
Y& y_i , Y& y_o) const

x_i, x_o are the linearization point and z_i, z_o are the coefficients to multiply
with.

As the skeleton terms are linear with respect to degrees of freedom the Jacobian
does not depend on the linearization point and we may reuse the alpha_skeleton
method here:

alpha_skeleton(ig,lfsu_i ,z_i ,lfsv_i ,lfsu_o ,z_o ,lfsv_o ,y_i ,y_o);

Method alpha_boundary

The alpha_boundary method is also new. It corresponds to the fourth sum on the
right hand side of equation (4) which is again linear in the degrees of freedom. The
interface is now:

template <typename IG, typename LFSU , typename X,
typename LFSV , typename R>

void alpha_boundary (const IG& ig,
const LFSU& lfsu_i , const X& x_i ,
const LFSV& lfsv_i , R& r_i) const

The residual contribution depends only on quantities on the inside element of the
intersection.

First we need to check whether the face is on the Dirichlet boundary:

auto facegeo = ig.geometry ();
auto facecenterlocal =

13

referenceElement(facegeo). position (0,0);
bool isdirichlet = param.b(ig.intersection (), facecenterlocal);
if (! isdirichlet) return;

Then the distance from face center to cell center is computed:

// inside cell center
auto insidecenterglobal = ig.inside (). geometry (). center ();

// face center in global coordinates
auto facecenterglobal = facegeo.center ();

// compute distance of these two points
insidecenterglobal -= facecenterglobal;
auto distance = insidecenterglobal.two_norm ();

and the residual contribution can be accumulated:

// face volume for integration
auto face_volume = facegeo.volume ();

// contribution to residual
r_i.accumulate(lfsv_i ,0,x_i(lfsu_i ,0)/ distance*face_volume);

Method jacobian_boundary

The jacobian_boundary method computes the Jacobian contributions resulting
from boundary face integrals and has the following interface:

template <typename IG, typename LFSU , typename X,
typename LFSV , typename M>

void jacobian_boundary (const IG& ig,
const LFSU& lfsu_i , const X& x_i ,
const LFSV& lfsv_i , M& mat_ii) const

The interface is the same as for alpha_boundary except that a matrix container is
passed as the last argument.

As the contributions only depend on test and trial functions of the inside element
there is only contribution to one matrix entry:

mat_ii.accumulate(lfsv_i ,0,lfsv_i ,0, face_volume/distance);

Method jacobian_apply_boundary

Finally, the jacobian_apply_boundary does a matrix-free Jacobian times vector
multiplication. Due to linearity we can reuse the alpha_boundary method:

template <typename IG, typename LFSU , typename X,
typename LFSV , typename Y>

void jacobian_apply_boundary
(const IG& ig,

const LFSU& lfsu_i , const X& x_i , const X& z_i ,

14

const LFSV& lfsv_i , Y& y_i) const
{

// reuse alpha_boundary because it is linear
alpha_boundary(ig,lfsu_i ,z_i ,lfsv_i ,y_i);

}

4.6 Running the Example

Figure 3 shows results for three different values of η on a relatively coarse mesh.
Clearly, the piecewise constant approximation can be seen.

Figure 3: Illustration of the influence of the parameter η in nonlinearity on the
solution. η = 0 (left), η = 10 (middle), η = 100 (right).

The table in Figure 4 shows a run-time comparison of the Q1 conforming finite
element method with numerical Jacobian from tutorial 01 with the cell-centered
finite volume method implemented here on a 5122 mesh in 2d and η = 100: One can
see that matrix assembly is five times faster, both due to less work per element and
analytic Jacobian. The time per iteration in the algebraic multigrid solver is about
the same but the number of iterations is less for the FV scheme. In total the FV
scheme is more than two times faster.

Figure 4: Comparison of conforming finite element and cell-centered finite volume
method

Q1 conforming FEM cell-centered FV
DOF 263169 262144
Matrix assembly time 0.87 0.20
Time per iteration 0.10 0.08
Linear Iterations 15 9
Newton Iterations 5 5
Total time 16.83 6.95

15

5 Outlook
Here are some suggestions how to test and modify this example:

• Compare the convergence of Newton’s method in tutorial 01 and 02. Does
the exact Jacobian in combination with a different discretization scheme make
any difference?

• Implement a convection term with upwinding. The equation in strong conser-
vative form is

∇{~βu−∇u}+ q(u) = f

where ~β(x) is a given (divergence free) velocity field.

In the residual form the full upwind discretization is realized by the following
term:

rconvh (u, v) =
∑
F∈Fi

h

~β(xF)u↑F
[
v(xT−F

)− v(xT+
F

)
]
|F |

where the upwind value is

u↑F =

{
u(x−F) ~β(xF) · νF ≥ 0
u(x+

F) else
.

16

	Introduction
	PDE Problem
	Cell-centered Finite Volume Method
	Realization in PDELab
	Ini-File
	Function main
	Function driver
	The Problem Class
	Local Operator NonlinearPoissonFV
	Running the Example

	Outlook

