Exercises for Tutorial01

Poisson with Nonlinearity

The code of tutorial 01 solves the problem

u=g on I'p C 09,
—Vu-v=j on 'y =900\ Tp

with the nonlinear function ¢(u) = nu?. Compared to the tutorial code this exercise
covers less variability (e.g. only 2D) for increased compilation speed. Still you can
easily change the degree of the discretization, the grid, or the nonlinearity.

In this exercise you will get to know the code, play around with different settings
and implement a different way to handle the Dirichlet boundary conditions.

Exercise 1 WaARrRMING Up

First we want to get familiar with the code.

1. Try out different grids, polynomial degrees and values for n. All these settings
can be modified through the ini file tutorialo1.ini and can be tested without
rebuilding your program. Here are some suggestions that could be interesting:

e Use higher values for 7.

e Run the code with the following setting:

[grid]

manager=yasp # set to ug | yasp
refinement=1 # be careful

[grid.structured]
LX=1.0

LY=1.0

NX=2

NY=2

[grid.twod]
filename=unitsquare.msh

[fem]
degree=1 # set to 1 | 2

[problem]
eta=2.0

[output]
filename=degreel_subsamplingO
subsampling=1

Try all combinations of degree=1|2 and subsampling=1|2 with appropri-
ate filename. Look at your solutions using ParaView and the warp by scalar
filter. You can see the underlying grid by choosing surface with edges
instead of surface in the ParaView drop down menu. How does subsam-
pling change the output?

2. It is easy to implement different nonlinearities. Use ¢(u) = exp(nu) by adjust-
ing the file problem.hh.

3. Go back to q(u) = nu®. Now we want to see how good our approximation is.
Change the function f(x) in the file problem.hh to f(z) = —2d+n(2?:1(x)?)2
where d is the dimension (and therefore size of z). Then u(x) = Z?Zl(x)? =
g(x) is the exact solution. Visualize the exact solution like it is done in tuto-
rial00. We start with the ini file:

[grid]

manager=yasp # set to ug | yasp

refinement=1 # be careful

[fem]
degree=1 # set to 1 | 2

[problem]
eta=100.0

[output]
filename=yasp_refl
subsampling=1

Use ParaView to see how the maximal error max |u — uy,| behaves for different
refinement levels refinement=1|...|5. Then try again for degree=2. What
happens here? Does the behaviour change when you use ug instead of yasp?

Exercise 2 NITSCHE’S METHOD FOR WEAK DIRICHLET BOUNDARY CONDITIONS

In this exercise we want to implement Dirichlet boundary conditions in a weak
sense by using Nitsche’s method. Instead of incorporating the Dirichlet boundary
condition into the Ansatz space we modify the residual:

TNitsche(u’U) _ / Vu-Vo+ (q(u) — flvde +/ juds
0 r

N

— Vu-uvds—/ (u—g)VU‘Vds%—nStab/ (u—g)vds.
I'p I'p r

D

Here 144 denotes a stabilization parameter that should be equal to 7w = ¢/h
for a constant ¢ > 0 large enough. This stabilization term is necessary to ensure
coercivity of the bilinear form.

In order to implement this method you have to do the following:

e Go to exercise0l.cc and include the new file nitschenonlinearpoissonfem
instead of nonlinearpoissonfem.

e In the file driver.hh you have to turn off the constraints. The code is already
there and you just have to comment/uncomment the parts marked with

//== Ezercise 2 {

//

//==}

to

//== Ezercise 2 {
//

//== }

By changing these lines you use no constraints, an empty constraints container
and construct the grid operator without constraints. Besides that you use the
new NitscheNonlinearPoissonFEM local operator that expects the stabilization
parameter ngqp-

e The key part is adding the alpha_boundary method to the new local oper-
ator in the file nitschenonlinearpoissonfem.hh. Take a close look at the
lambda_volume, lambda_boundary and alpha_volume methods and you should
be on your way.

Hint: The code for generating the transformation is already there:

// transform gradients of shape functions to real element
const auto S = geo_inside.jacobianInverseTransposed(local)|;

When you have done all that, test your implementation. Use the test case from
exercise 1 with f(z) = —2d + n(3.¢_,(2)2)? and exact solution u(z) = Y0 (2)? =

7 %

g(x) and compare it to your approximation.

Introduce the parameter

[fem]
stab = 100

in the ini file and look at the maximal error max |u — uy| for stab=1011001000.

