Exercises for the introduction to the Grid Interface

Exercise 1 ITERATING OVER A GRID

For running this exercise, you should start a fresh terminal and install gnuplot:

dune@dune -course:~$ sudo apt-get install gnuplot

Then, switch to the working directory of this exercise:

dune@dune -course:~$ cd iwr-course-2021

dune@dune -course:~iwr-course-2021$ cd release-build
dune@dune -course:“release-build$ cd dune-pdelab-tutorials
dune@dune -course: “dune-pdelab-tutorials$ cd gridinterface
dune@dune -course:“gridinterface$ cd exercise

dune@dune -course:~“exercise$ cd task

This is the build directory, so typing make will build three executables. To switch
to the source directory, where the actual .cc files are located, type cd src_dir. To
switch back to the build directory, type cd ...

Open the file grid-exercisel.cc in a text editor. It is an example code that
creates a structured grid (using the DUNE class YaspGrid). The printgrid func-
tion then visualizes the grid as a png file with some useful information, like global
and local indices, boundary intersections and such. You can have a look at the
visualization after a succesful run of the executable grid-exercisel with:

dune@dune -course:~“task$ xdg-open printgrid_O.png

By default, a 4x4 grid is generated. You can change this to some other number,
recompile and rerun the executable and have a look at the new grid visualization.

The code then iterates over all elements of this grid and over all intersections of
each element. The code is meant to print some information about the grid cells and
the intersections (but it does not yet). The file is intermingled by suggestions what
to print. You are invited to follow these suggestions or to try any of the member
functions you learned about in the lectures.

7 \
I \
I
// \\\ -

fgeo_self




Exercise 2 INTEGRATING A FUNCTION

Write a code that integrates a function using a quadrature formula of given order
using the code in the file integration.cc. Dune provides you with quadrature
formulas for many geometry types and integration orders with the following simple
mechanism:

#include <dune/pdelab/common/quadraturerules.hh>

auto rule = Dune::PDELab::quadratureRule(globalgeo,order);
for (const auto& qp : rule)

{ ... %

You can now call the methods weight () and position() on the quadrature point
object gp.

Exercise 3 THE FINITE VOLUME METHOD FOR THE TRANSPORT EQUATION

The partial differential equation considered in this exercise is the linear transport
equation,

Oe(z,t) + V- (u(z) c(z,t)) =0 in €, .

c(x,t) = cin(x,t) on [y,. (1)
The unknown solution is denoted by c¢(z,t) and the velocity field by u(z). The
domain 2 is some open subset of R%. For this exercise, we choose d = 2 where
intersections are 1-D edges. For d = 3, intersections would be 2-D faces. The inflow
boundary I';, is the set of points x on the boundary of €2 for which the velocity
vector u(z) points inwards.

We want to numerically solve this equation by a cell-centered finite volume
scheme. We discretize the domain €) by a triangulation 7}, and approximate the
solution ¢ by a function ¢, that is constant on each cell £ € T,. We denote the
value of ¢;, on a cell E by cg.

Using the explicit Euler time discretization, the scheme can be written as

t —t
cp(tesn) = culty) — % > lel (i) n - u”. (2)
eCOFE

The notation is as follows: |F| is the area of the cell F, the sum runs over all
intersections e of £ with either the boundary or a neighboring cell, |e| is the length
of edge e, n}, is the outer normal of edge e and u® is the velocity at the center
of edge e. Finally, ¢® denotes the upwind concentration. If n% - u® > 0, this is
cp. Otherwise it is either the concentration in the neighboring cell or given by the
boundary condition ¢;,, depending on the location of e.

Run the incomplete finite volume program and familiarize yourself with the code
in the files finitevolume.cc and fv.hh.

2




Take a look at the code. You will recognize some of the methods and classes
from the first part of the grid exercise. Don’t bother with grid creation and the
VTK output for now, that will be explained in the second part of the grid tutorial.

The program will already compile and run as-is, but it does not yet update the
solution (i.e. the solution does not change over time). You can run the program
finitevolume and take a look at its current output. The solution is written in the
VTK data format, which you can visualize using ParaView. The data consists of
one .vtk file per time step and an additional file concentration.pvd that contains
information about the whole time series. Open that file by calling

dune@dune -course:~task$ paraview --data=concentration.pvd &

to load the complete output of the program. ParaView will be explained in more
detail in the second part of the grid tutorial, but for now just click the “Apply*
button in the middle left of the screen to load the data and the triangular “Play “
button at the top to start playing the solution. You won’t see anything move right
now, but once you've finished the next part of the exercise, the red blob in the
bottom left part of the solution should start moving to the top right, blurring out
in the process.

Complete the implementation in the files finttevolume.cc and fv.hh.

An implementation of the scheme at hand has to store the values of the con-
centration on each cell for the current time step. In the example code, a sim-
ple std: :vector<double> is used for this purpose, see the type ScalarField in
finitevolume.cc. We use a mapper to get a consecutive numbering of the cells of
the grid, even for hybrid grids that contain cells with different geometry types. If
the variable e holds some entity of codimension 0, the concentration value in this
entity is c [mapper.index(e)].

At each time step, an update to the vector of concentrations has to be com-
puted. This is done by the update_concentration() member function of the class
FiniteVolume in the file fv.hh. This function iterates over all cells of the grid in
order to compute an update for each cell. Your task is to implement the computa-
tion of the update update[cell_index]. To this end, the code has to iterate over
all intersections of the current cell. For each intersection, the flux |e|n - u®/|E| is
to be calculated. Depending on the sign of this flux, the upwind decision can be
made.

Further tasks

Once you have managed to implement the Finite Volume scheme, there are a
few additional things you can try:

e Try varying the velocity field (maybe make it dependent on the coordinate)
or add an inflow boundary.

e Increase the time step size. How far can you go before the scheme breaks
down? It might be a good idea to pass the time step size as a command
line parameter to the program in this case. You can convert a command line
parameter to a double value like this:




#include <cstdlib>

int main(int argc, char*x argv)

{
double dt = atof (argv([1]);

e Right now, the program only works for 2D calculations. While you can replace
the value for dim in the main() function, the program will not work correctly
afterwards. Find what needs to be changed and fix it. Afterwards, try running
your program in 3D by setting dim = 3 and recompiling. Before running the
program, you might want to reduce the grid size, which is given by the variable
N.



