
DUNE PDELab Tutorial 05
Adaptive Finite Element Method for a

Nonlinear Poisson Equation

DUNE/PDELab Team

February 5, 2021

Contents
1 Introduction 2

2 Problem Formulation 2

3 Adaptive Grid Refinement 3

4 Realization in PDELab 5
4.1 Ini-File . 5
4.2 Function main . 6
4.3 Function driver . 7
4.4 Classes Problem and NonlinearPoissonFEM 12
4.5 Local Operator NonlinearPoissonFEMEstimator 12
4.6 Running the Example . 18

5 Outlook 20

1

1 Introduction
In this tutorial we solve the nonlinear Poisson equation from tutorial 01 using adap-
tive grid refinement. The finite element solution on a given mesh is used to compute
local error indicators that can be used to iteratively reduce the discretization error.
It is assumed that the nonlinearity of the PDE is not too strong, so that it may be
approximated by linearizing around the current finite element solution. This allows
the calculation of local error estimates that quantify the discretization error on each
element of the mesh.

Depends On

This tutorial depends on tutorial 01 which discusses the solution of the considered
partial differential equation. It is assumed that you have worked through tutorial 01
before. Additionally, the error estimator has to assemble skeleton terms, which are
explained in greater detail in tutorial 02. It may therefore be useful to have worked
through that tutorial as well, but the actual method discussed there is not relevant
here.

2 Problem Formulation
We consider the following nonlinear Poisson equation with Dirichlet and Neumann
boundary conditions as introduced in tutorial 01:

−∆u+ q(u) = f in Ω, (1a)
u = g on ΓD ⊆ ∂Ω, (1b)

−∇u · ν = j on ΓN = ∂Ω \ ΓD. (1c)

Ω ⊂ Rd is a domain, q : R→ R is a given, possibly nonlinear function and f : Ω→ R
is the source term and ν denotes the unit outer normal to the domain.

The weak formulation of this problem is derived by multiplication with an appro-
priate test function and integrating by parts. This results in the abstract problem:

Find u ∈ U s.t.: rNLP(u, v) = 0 ∀v ∈ V, (2)

with the continuous residual form

rNLP(u, v) =

∫
Ω

∇u · ∇v + (q(u)− f)v dx+

∫
ΓN

jv ds

and the function spaces U = {v ∈ H1(Ω) : “v = g” on ΓD} and V = {v ∈ H1(Ω) :
“v = 0” on ΓD}. We assume that q is such that this problem has a unique solution.

The example application uses a domain Ω that is L-shaped and given by

Ω =
{

(x, y) ∈ R2 : |x| < 1, |y| < 1, (x < 0 ∨ y > 0)
}
.

We set f = 0 and q(u) = 0, and only consider Dirichlet boundary conditions. The
resulting PDE in residual form is

rNLP(u, v) =

∫
Ω

∇u · ∇v dx,

2

and the function
u(r, θ) = r2/3 · sin

(
2

3
θ

)
in polar coordinates is one of its solutions on the given domain. We choose the
restriction of this function to the boundary of Ω for the Dirichlet boundary condition.

3 Adaptive Grid Refinement
In the previous tutorials a fixed finite element space Vh was used, based on a fixed
finite element mesh with an ordered set

Xh = {x1, . . . , xN} (3)

of vertices and an ordered set

Th = {T1, . . . , TM} (4)

of elements. The task of choosing an appropriate mesh was not discussed in detail.
Any choice of finite element space will lead to discretization errors due to the

finite-dimensional approximation of the true solution of the PDE, but the size of
this error can be controlled by choosing an adequate mesh. Let uh ∈ Vh be the finite
element solution and ‖ · ‖ an appropriate norm. The goal is then

‖u− uh‖ ≤ TOL

with a given tolerance TOL, while keeping the complexity and size of Vh as low as
possible.

The a-priori error estimates of formal proofs are not suitable for this task, since
they contain a constant C that is typically unknown and don’t provide information
about the spatial distribution of the error. For this reason one is interested in
a-posteriori error estimates of the form

‖u− uh‖ ≤ γ(uh) =

(∑
T∈Th

γ2
T (uh)

)1/2

, (5)

where γT (uh) is a local error estimator for the element T . Such an error estimate
should:

• have comparatively low cost of calculation to make an adaptive approach fea-
sible

• accurately describe the spatial distribution and size of the discretization error

The local estimates γT (uh) can then be used in a strategy that tries to minimize γ(uh)
for fixed dim(Vh) and thereby find a mesh with low discretization error ‖u− uh‖.

If the considered PDE is linear, i.e. q(u) is an affine linear function, then it can
be shown [2, 1] that such an estimate of the discretization error is given by

γ2
T (uh) = h2

T‖RT (uh)‖2
0,T +

∑
F∈Fh∩∂T

hT‖RF (uh)‖2
0,F

3

with the element residuals

RT (uh) = f + ∆uh − q(uh)

and the face residuals

RF (uh) =

{
2−1/2[−(∇uh) · ν] F ∈ F i

h

−(∇uh) · ν − j F ∈ FN
h

Here hT is the local mesh width of the element T , Fh the set of faces of the elements
in Th, ∂T the boundary of element T , F i

h ⊂ Fh the set of interior faces, FN
h ⊂ Fh the

set of Neumann boundary faces and ν the unit normal vector of the face F pointing
from one of the elements T−F that belong to F to the other T+

F . ‖·‖0,T is the L2 norm
on T , ‖ · ‖0,F that on F , and [·] the jump of the given expression across the face F
in the direction of ν. Broadly speaking, the element residual RT measures to which
degree uh solves the PDE on the element T , and the face residual RF measures the
consistency of the flux −(∇uh) · ν between the elements.

With these definitions one can show that

‖u− uh‖1,Ω ≤ Cγ(uh) = C

(∑
T∈Th

γ2
T (uh)

)1/2

with ‖ · ‖1,Ω the H1 norm on Ω. The right hand side of this inequality does not
depend on u, which means it can be evaluated and used to control the discretization
error.

Several aspects have to be considered:

• The derivation of the error estimator given above does not require additional
regularity beyond u ∈ H1(Ω). This is critical, since error control is especially
important in problems with low regularity.

• The constant C in the estimate is usually not known exactly, and this should
be taken into account when defining the tolerance TOL.

• The error estimate may converge with a lower order than the actual discretiza-
tion error which yields a very pessimistic stopping criterion. If the error es-
timate converges with the same order, then the estimator is called efficient.
The lowest applicable constant C is then the efficiency index.

All of these considerations only hold if the PDE is linear. If the function q(u)
is nonlinear, then the estimate γ(uh) is no longer guaranteed to be an upper bound
for the discretization error ‖u − uh‖1,Ω. However, it may still be used as an error
indicator that is used to refine a given mesh. This can produce misleading results,
and therefore the conclusions drawn from the estimate should be rather conservative.
The error estimate will become more reliable the closer the finite element solution
uh is to the exact solution u, as long as the function q(u) is regular enough to be
linearized around the exact solution.

4

4 Realization in PDELab
The structure of the code is very similar to that of tutorial 01. It consists of the
following files:

1) The ini-file tutorial05.ini holds parameters read by various parts of the code
which control the execution.

2) The main file tutorial05.cc includes the necessary C++, DUNE and PDELab
header files and contains the main function where the execution starts. The
purpose of the main function is to instantiate DUNE grid objects and call the
driver function.

3) File driver.hh instantiates the necessary PDELab classes for solving a nonlinear
stationary problem and solves the problem. The file is similar to that of tutorial
01 but adds a loop for iterative refinement.

4) File nonlinearpoissonfem.hh contains the class NonlinearPoissonFEM, the lo-
cal operator from tutorial 01.

5) File nonlinearpoissonfemestimator.hh contains an additional local operator
NonlinearPoissonFEMEstimator that implements the local error indicators.

6) Finally, the tutorial provides a parameter class in file problem.hh and some mesh
files.

4.1 Ini-File

The ini-file allows the user to set various parameters for the execution of the program:

[grid]
dim=2
manager=ug

The grid section allows choosing between UGGrid and AluGrid. The dim parameter
could be used to select a different space dimension, but the tutorial only supplies a
two-dimensional domain.

[grid.twod]
filename=ldomain.msh

The grid.twod section is used to specify the gmsh-file that is used for the coarse
grid.

[fem]
degree =1
steps =10
uniformlevel =0
tol =0.05
fraction =0.8

5

The fem section provides the parameters for the finite element method. degree
is the polynomial degree for the finite element space. The remaining parameters
control the adaptive refinement: steps specifies the maximum number of iterations
for the refinement loop, uniformlevel the number of iterations that should use
global refinement in the beginning, tol denotes the error tolerance used as a stopping
criterion, and fraction allows setting the number of elements that should be marked
in each step.

[problem]
eta =0.0

The problem section provides parameters for the specific problem to be solved. The
tutorial solves the Laplace equation with a known reference solution, and therefore
η = 0 in the ini-file. However, the error estimator remains applicable if different
values are chosen.

[output]
filename=adaptive_ug
subsampling =1

The output section controls the output of the solution to a vtk-file using DUNE’s
SubsamplingVTKWriter. The user can give the name of the output file and specify
the number of subsampling intervals.

4.2 Function main

The main function in tutorial05.cc is very similar to the ones in tutorial00.cc
and tutorial01.cc. It starts by getting a reference to the Dune::MPIHelper sin-
gleton and opens and reads in the ini-file. These parts are not repeated here.

Then there are two sections where Dune::Grid objects are instantiated and the
driver function is called. Since the grid manager and the polynomial degree are
template parameters of various classes but the user should be able to select these
during run-time in the ini-file all the different cases are selected with if-statements
within which the appropriate classes are instantiated. We present the section using
UGGrid here, the section for AluGrid is nearly identical.

// use UG grid if available and selected
if (dim==2 && gridmanager =="ug")

{
#if HAVE_UG

typedef Dune::UGGrid <2> Grid;
std:: string filename = ptree.get("grid.twod.filename",

"ldomain.msh");
Dune:: GridFactory <Grid > factory;
Dune::GmshReader <Grid >:: read(factory ,filename ,true ,true);
std::shared_ptr <Grid > gridp(factory.createGrid ());
if (degree ==1) driver <Grid ,1>(*gridp ,ptree);
if (degree ==2) driver <Grid ,2>(*gridp ,ptree);
if (degree ==3) driver <Grid ,3>(*gridp ,ptree);
if (degree ==4) driver <Grid ,4>(*gridp ,ptree);

#else

6

std::cout << "You␣selected␣ug␣as␣grid␣manager␣"
<< "but␣ug␣was␣not␣found␣during␣installation"
<< std::endl;

#endif
}

This part of the code is executed if UGGrid has been chosen as grid manager and
Dune has been compiled with support for UG. A grid is constructed from the gmsh-
file that was defined in the ini-file, and afterwards the driver function is called with
the correct polynomial degree for the finite element space. Note that the code of the
implementation could easily be extended to 3D by supplying a matching mesh file
and adjusting the lines above, since the rest of the implementation is independent
of the space dimension.

4.3 Function driver

The function driver alternates between solving the problem on the current mesh
and using the current solution for adaptive refinement. These two steps are repeated
until the error estimate is below the prescribed tolerance or the maximum number of
iterations is reached. The parts of the problem that are not affected by the changing
mesh are instantiated outside of the loop.

// make user functions
RF eta = ptree.get("problem.eta",(RF)1.0);
Problem <RF> problem(eta);
auto glambda =

[&](const auto& e, const auto& x){ return problem.g(e,x);};
auto g = Dune:: PDELab :: makeGridFunctionFromCallable(gv,glambda);
auto blambda =

[&](const auto& i, const auto& x){ return problem.b(i,x);};
auto b = Dune:: PDELab :: makeBoundaryConditionFromCallable(gv,blambda);

The parameter class Problem defines functions for the right hand side f , the source
term q and the value of the Dirichlet boundary condition g. These functions are
independent of the chosen discretization. This also holds for the lambda functions
that encapsulate the Dirichlet boundary condition and its value.

// Make grid function space
typedef Dune:: PDELab :: PkLocalFiniteElementMap <GV,DF,RF,degree > FEM;
FEM fem(gv);
typedef Dune:: PDELab :: ConformingDirichletConstraints CON;
typedef Dune:: PDELab ::ISTL:: VectorBackend <> VBE;
typedef Dune:: PDELab :: GridFunctionSpace <GV,FEM ,CON ,VBE > GFS;
GFS gfs(gv,fem);
gfs.name("Vh");

The grid function space GFS is a representation of the finite element space Vh. Most
of its internals are independent of the actual mesh. The basis functions defined by
the finite element map FEM, the constraints container CON and the vector backend
VBE do not need to be modified when the mesh is refined. The only parts of the

7

grid function space that have to be updated are the local to global map and the
constrained indices, which will be considered later in this function.

// Assemble constraints
typedef typename GFS:: template ConstraintsContainer <RF >:: Type CC;
CC cc;
Dune:: PDELab :: constraints(b,gfs ,cc); // assemble constraints

// A coefficient vector
using Z = Dune:: PDELab :: Backend ::Vector <GFS ,RF >;
Z z(gfs); // initial value

// Fill the coefficient vector
Dune:: PDELab :: interpolate(g,gfs ,z);

Then the constraints of the initial mesh and an initial guess for the finite element
solution are assembled.

// adaptation loop
// only grid function space and coefficient vector
// live outside this loop
int steps = ptree.get("fem.steps",(int)3);
int uniformlevel = ptree.get("fem.uniformlevel",(int)2);
for (int i=0; i<steps; i++)
{

The central loop of the function starts by reading in the maximum number of refine-
ment iterations and the number of steps that should use global refinement. This can
be used to guarantee a maximum diameter of the elements of the resulting meshes.
From this point on all statements are part of the loop that is repeated until the error
estimate is small enough or the maximum number of iterations is reached.

std:: stringstream s;
s << i;
std:: string iter;
s >> iter;
std::cout << "Iteration:␣" << iter

<< "\thighest␣level␣in␣grid:␣" << grid.maxLevel ()
<< std::endl;

std::cout << "constrained␣dofs=" << cc.size()
<< "␣of␣" << gfs.globalSize () << std::endl;

Information about the refinement level and dimension of the current finite element
space is printed at the beginning of each iteration.

// Make local operator
typedef NonlinearPoissonFEM <Problem <RF>,FEM > LOP;
LOP lop(problem);

// Make a global operator
typedef Dune:: PDELab ::ISTL:: BCRSMatrixBackend <> MBE;
MBE mbe((int)pow (1+2* degree ,dim));
typedef Dune:: PDELab :: GridOperator <

8

GFS ,GFS , /* ansatz and test space */
LOP , /* local operator */
MBE , /* matrix backend */
RF,RF,RF, /* domain , range , jacobian field type */
CC,CC /* constraints for ansatz and test space */
> GO;

GO go(gfs ,cc,gfs ,cc,lop ,mbe);

Then the local operator and global operator of the nonlinear Poisson equation are
created. The local operator is identical to the one of tutorial 01. It does not
store information about the mesh and could therefore also be created outside of the
loop. The global operator, however, has to take the discretization into account and
therefore has to be updated after each iteration.

// Select a linear solver backend
typedef Dune:: PDELab :: ISTLBackend_SEQ_CG_AMG_SSOR <GO> LS;
LS ls(100 ,0);

// solve nonlinear problem
Dune:: PDELab :: NewtonMethod <GO,LS> newton(go,ls);
newton.setParameters(ptree.sub("newton"));
newton.apply(z);

The next few lines construct a linear solver backend and an instance of the Newton
solver and solve the nonlinear problem on the current mesh.

// set up error estimator
typedef Dune:: PDELab :: P0LocalFiniteElementMap <DF,RF,dim > P0FEM;
P0FEM p0fem(Dune:: GeometryTypes :: simplex(dim));
typedef Dune:: PDELab :: NoConstraints NCON;
typedef Dune:: PDELab :: GridFunctionSpace <GV,P0FEM ,NCON ,VBE > P0GFS;
P0GFS p0gfs(gv,p0fem);
typedef NonlinearPoissonFEMEstimator <Problem <RF>,FEM > ESTLOP;
ESTLOP estlop(problem);
typedef Dune:: PDELab :: EmptyTransformation NCC;
typedef Dune:: PDELab :: GridOperator <

GFS ,P0GFS , /* one value per element */
ESTLOP , /* operator for error estimate */
MBE ,RF,RF,RF, /* same as before */
NCC ,NCC /* no constraints */
> ESTGO;

ESTGO estgo(gfs ,p0gfs ,estlop ,mbe);

These lines construct the error estimator and local error indicators. Each of these
indicators is a single value γT that is associated with one of the elements T , and
we use a finite element map P0FEM for piecewise constant functions to store these
values. The function space does not need additional constraints, similar to the finite
volume space of tutorial 02, and therefore the NoConstraints class is passed to the
grid function space. Then a local operator for the error estimator is constructed.
The parameter class of the PDE is passed as a template argument, since the esti-
mator needs access to the problem definition. These components are then used to

9

construct a grid operator of type ESTGO which is a representation of the element-wise
computation of the error estimate.

// compute local error contribution and global error
using Z0 = Dune:: PDELab :: Backend ::Vector <P0GFS ,RF >;
Z0 z0(p0gfs ,0.0);
estgo.residual(z,z0);
auto estimated_error = sqrt(z0.one_norm ());
std::cout << "Estimated␣error␣in␣step␣" << i

<< "␣is␣" << estimated_error << std::endl;

A vector z0 for the local estimates is created, and the error estimate is computed
as the residual of the estimation grid operator. This way, the infrastructure of the
assembler for the residual form of the PDE can be reused for this task. The result is
a vector containing the squared values of the local error estimates. The norm of the
estimated error is then printed to provide feedback about the refinement process.

// vtk output
std::cout << "VTK␣output" << std::endl;
Dune:: SubsamplingVTKWriter <GV>

vtkwriter(gv,Dune:: refinementIntervals(ptree.get("output.subsampling",(int)1)));
typedef Dune:: PDELab :: DiscreteGridFunction <GFS ,Z> ZDGF;
ZDGF zdgf(gfs ,z);
typedef Dune:: PDELab :: VTKGridFunctionAdapter <ZDGF > VTKF;
vtkwriter.addVertexData(

std::shared_ptr <VTKF >(new VTKF(zdgf ,"fesol")));
typedef Dune:: PDELab :: DiscreteGridFunction <P0GFS ,Z0> Z0DGF;
Z0DGF z0dgf(p0gfs ,z0);
typedef Dune:: PDELab :: VTKGridFunctionAdapter <Z0DGF > VTKF0;
vtkwriter.addCellData(

std::shared_ptr <VTKF0 >(new VTKF0(z0dgf ,"error2")));
vtkwriter.write(ptree.get("output.filename",

(std:: string)"output")+iter , Dune::VTK:: appendedraw);

A VTK output of the finite element solution and the squared error is created. This
allows careful inspection of the estimated error and how it changes in the course of
the adaptive refinement.

// error control
auto tol = ptree.get("fem.tol",(double)0.0);
if (estimated_error <=tol) break;
if (i==steps -1) break;

If the norm of the estimated error is below the desired tolerance, then the finite
element solution can be accepted. Additional refinement is unnecessary and the
loop is exited. This also happens if the last iteration is reached, since the modified
mesh would not be used for further computations.

// mark elements for refinement
std::cout << "mark␣elements" << std::endl;
auto fraction = ptree.get("fem.fraction",(double)0.5);
RF eta_refine ,eta_coarsen;

10

Dune:: PDELab :: error_fraction(
z0,fraction ,0.0, eta_refine ,eta_coarsen);

if (fraction >=1.0 || i<uniformlevel) eta_refine =0.0;
Dune:: PDELab :: mark_grid(grid ,z0,eta_refine ,0.0 ,2);

If the norm of the error estimate is still too large, then it has to be decided which of
the elements should be refined and which should be kept. The fraction of elements
that should be refined is read from the ini-file. The function error_fraction is
called to translate this fraction of elements into a threshold eta_refine of the value
of the local indicator that separates the elements that should be refined from those
that should remain the same. It is also possible to request a fraction of elements that
should be coarsened, but this value is zero here for simplicity. If the chosen fraction
contains all elements or the loop is still in an iteration that should refine globally,
then this threshold is set to zero. Afterwards the function mark_grid is called and
marks all elements which have a value in z0 that is larger than eta_refine to
request their refinement.

// do refinement
std::cout << "adapt␣grid␣and␣solution" << std::endl;
Dune:: PDELab :: adapt_grid(grid ,gfs ,z,2*(degree +1));

This is the central line that calls adapt_grid and modifies the mesh. In contrast
to most other functions in PDELab, this function requires the grid as an argument,
and not a GridView. Grid views are a read only concept, and adapt_grid has to
modify its argument. The marks on the elements are passed to the grid manager,
which decides how it can best achieve the requested refinement. Depending on the
capabilities and restrictions of the grid manager, the resulting mesh may not be
exactly as requested. Additional refinement may be necessary to keep the mesh
conforming, for example. However, the level that is requested is a lower bound for
the resulting level at each point in the domain, i.e. elements are only coarsened
if requested and any marked element is refined. The function adapt_grid also
receives the grid function space gfs and the solution z as arguments. The grid
function space is updated to reflect the changes of the underlying mesh, and the
solution is transferred to the new grid function space, by default through local L2

projection onto the elements of the new mesh. The last argument specifies the order
of the quadrature rule that is used in this process.

// recompute constraints
std::cout << "constraints␣and␣stuff" << std::endl;
Dune:: PDELab :: constraints(b,gfs ,cc);

// write correct boundary conditions in new vector
Z znew(gfs);
Dune:: PDELab :: interpolate(g,gfs ,znew);

// copy Dirichlet boundary to interpolated solution
Dune:: PDELab :: copy_constrained_dofs(cc,znew ,z);

}

The function adapt_grid has updated the grid function space and transferred the
solution to the new mesh, but the Dirichlet boundary condition requires manual

11

intervention. The function constraints is called again, which updates the list of
constrained degrees of freedom on the Dirichlet boundary. Then the corresponding
values of the Dirichlet boundary condition are computed and copied onto the con-
strained degrees of freedom of z. This guarantees that the function g of Dirichlet
boundary values is always represented in the most accurate way possible on the
mesh. With these last steps the iteration is finished, and the next one begins.

4.4 Classes Problem and NonlinearPoissonFEM

These two classes are nearly identical to those of tutorial 01 and are therefore
skipped. The only differences are the definitions of the right hand side and Dirichlet
boundary condition.

//! right hand side
template <typename E, typename X>
Number f (const E& e, const X& x) const
{

return 0.0;
}

The example application of the tutorial solves the Laplace equation for a known
reference solution, and therefore we set f = 0.

//! Dirichlet extension
template <typename E, typename X>
Number g (const E& e, const X& xlocal) const
{

auto x = e.geometry (). global(xlocal);
double theta = std::atan2(x[1],x[0]);
if(theta < 0.0) theta += 2*M_PI;
auto r = x.two_norm ();
return pow(r ,2.0/3.0)* std::sin(theta *2.0/3.0);

}

The value of the Dirichlet boundary condition is the restriction of the reference
solution to the boundary, which is given by

u(r, θ) = r2/3 · sin
(

2

3
θ

)
in polar coordinates.

4.5 Local Operator NonlinearPoissonFEMEstimator

The class NonlinearPoissonFEM implements the element-wise computations of the
error estimate introduced in Section 3. The computation of the error estimate is then
implemented as a grid operator that returns the square of the estimated error as its
residual. The contributions RT for the elements are provided by an alpha_volume
term, while the contributions RF for the faces are provided by alpha_skeleton and
alpha_boundary terms.

The definition of class NonlinearPoissonFEMEstimator starts as follows:

12

*/
template <typename Param , typename FEM >
class NonlinearPoissonFEMEstimator

The class is parametrized by a parameter class and a finite element map, just as
the NonlinearPoissonFEM class. The parameter class is the same in both cases
and provides access to the problem definition. The finite element map is expected
to provide element-wise constant functions that match the geometry of the mesh
elements, since the calculated error estimate contains one value per element. The
class does not contain methods for the Jacobian and matrix-free Jacobian evaluation,
as only the residual has to be assembled for the error estimator. Therefore, only the
LocalOperatorDefaultFlags are inherited.

Just as the class NonlinearPoissonFEM, the local operator contains three private
data members, a cache for evaluation of the basis functions on the reference element:

{
// a cache for local basis evaluations
typedef typename FEM:: Traits :: FiniteElementType

:: Traits :: LocalBasisType LocalBasis;

a reference to the parameter object:

Dune:: PDELab :: LocalBasisCache <LocalBasis > cache;

and an integer value controlling the order of the formulas used for numerical quadra-
ture:

Param& param; // parameter functions

The class has an additional private method diameter:

// a function to compute the diameter of an entity
template <class GEO >
typename GEO:: ctype diameter (const GEO& geo) const
{

typedef typename GEO::ctype DF;
DF hmax = -1.0E00;
for (int i=0; i<geo.corners (); i++)

{
auto xi = geo.corner(i);
for (int j=i+1; j<geo.corners (); j++)

{
auto xj = geo.corner(j);
xj -= xi;
hmax = std::max(hmax ,xj.two_norm ());

}
}

return hmax;

This function iterates over all pairs of corners of a given entity and defines the
maximum distance among these pairs as its diameter. This information is required

13

to scale the element contributions and face contributions of the error estimate with
the local mesh width.

The public part of the class again starts with the definition of the flags controlling
the generic assembly process. The doPatternVolume and doPatternSkeleton flags
are both false to indicate that the sparsity pattern of the Jacobian can be skipped
for this local operator:

public:
// pattern assembly flags
enum { doPatternVolume = false };

The residual assembly flags indicate that in this local operator we will provide
the methods lambda_volume, lambda_boundary and alpha_volume:

// residual assembly flags
enum { doAlphaVolume = true };
enum { doAlphaSkeleton = true };

Next comes the constructor taking as an argument a reference to a parameter
object and the optional increment of the quadrature order:

//! constructor: pass parameter object
NonlinearPoissonFEMEstimator (Param& param_ , int incrementorder_ =0)

: param(param_), incrementorder(incrementorder_)

Method alpha_volume

This method assembles the error estimate contribution RT for a single element T .
Its interface is

// volume integral depending on test and ansatz functions
template <typename EG, typename LFSU , typename X,

typename LFSV , typename R>
void alpha_volume (const EG& eg, const LFSU& lfsu ,

This method is similar to the alpha_volume method of NonlinearPoissonFEM,
but assembles a different function. The method starts by extracting the floating
point type to be used for computations:

{
// types & dimension

Then a quadrature rule is selected

// select quadrature rule
auto geo = eg.geometry ();
const int order =

incrementorder +2* lfsu.finiteElement (). localBasis (). order ();
auto rule = Dune:: PDELab :: quadratureRule(geo ,order);

14

a variable sum to collect the contributions is created, and the quadrature loop is
started

// loop over quadrature points
RF sum (0.0);
for (const auto& ip : rule)

{

Within the quadrature loop the basis functions are evaluated

// evaluate basis functions
auto& phihat = cache.evaluateFunction(

and the value of uh at the quadrature point is computed.

// evaluate u
RF u=0.0;

We neglect contributions containing the gradient of uh, since they would require
second-order derivatives of the basis functions. This means we do not need to
evaluate the gradients of the basis functions.

The right hand side f and the nonlinear term q(uh) are evaluated:

// evaluate reaction term
auto q = param.q(u);

// evaluate right hand side parameter function
auto f = param.f(eg.entity(),ip.position ());

and the local error estimate for this quadrature point is calculated:

// integrate f^2
RF factor =

ip.weight () * geo.integrationElement(ip.position ());
sum += (f-q)*(f-q)* factor;

After summing up all local contributions, we are in the position to finally com-
pute the estimate on the element by multiplying with h2

T :

// accumulate cell indicator
auto h_T = diameter(eg.geometry ());

Method alpha_skeleton

This method has a structure that is very similar to the skeleton terms of the finite
volume method from tutorial 02. It implements the error estimate contributions RF

for the interior faces of the mesh and has the following interface:

// skeleton integral depending on test and ansatz functions
// each face is only visited ONCE!

15

template <typename IG, typename LFSU , typename X,
typename LFSV , typename R>

void alpha_skeleton (const IG& ig,
const LFSU& lfsu_i , const X& x_i , const LFSV& lfsv_i ,
const LFSU& lfsu_o , const X& x_o , const LFSV& lfsv_o ,

As in tutorial 02, the arguments comprise an intersection, local trial function and
local test space for both elements adjacent to the intersection and containers for the
local residual contributions in both elements. The subscripts _i and _o correspond
to “inside” and “outside”. W.r.t. our notation above “inside” corresponds to “-” and
“outside” corresponds to “+”.

As already noted in the context of the finite volume method of tutorial 02, the
alpha_skeleton method needs to assemble contributions for both elements next to
the intersection.

It starts by extracting the geometries of the intersection relative to the two
elements adjacent to the intersection

{
// geometries in local coordinates of the elements
auto insidegeo = ig.geometryInInside ();

the two elements themselves

// inside and outside cells
auto cell_inside = ig.inside ();

and their geometries

// geometries from local to global in elements
auto geo_i = cell_inside.geometry ();

Then the dimension of the intersection is extracted and a quadrature rule is
created:

// dimensions
const int dim = IG:: Entity :: dimension;

// select quadrature rule
auto globalgeo = ig.geometry ();
const int order =

incrementorder +2* lfsu_i.finiteElement (). localBasis (). order ();

The quadrature rule integrates over the intersection and collects contributions
as the rule in alpha_skeleton did:

// loop over quadrature points and integrate normal flux
typedef decltype(makeZeroBasisFieldValue(lfsu_i)) RF;
RF sum (0.0);
for (const auto& ip : rule)

16

The coordinates on the intersection are translated to coordinates in the two
elements to make the evaluation of uh and its gradient possible, and the unit vector
on the intersection pointing from T− to T+ is obtained.

{
// position of quadrature point in local coordinates of elements
auto iplocal_i = insidegeo.global(ip.position ());
auto iplocal_o = outsidegeo.global(ip.position ());

// unit outer normal direction

The gradients of the basis functions are evaluated on the reference element,
mapped onto the actual element, and used to calculate (∇uh) ·ν for the element T−F .
Afterwards the same steps are performed for T+

F , which is not repeated here.

// gradient in normal direction in self
auto& gradphihat_i = cache.evaluateJacobian(

iplocal_i ,lfsu_i.finiteElement (). localBasis ());
const auto S_i = geo_i.jacobianInverseTransposed(iplocal_i);
RF gradun_i = 0.0;
for (size_t i=0; i<lfsu_i.size (); i++)

{
Dune:: FieldVector <RF,dim > v;
S_i.mv(gradphihat_i[i][0],v);
gradun_i += x_i(lfsu_i ,i)*(v*n_F);

The face residual RF is calculated as the difference between the two directional
derivatives of uh across the face, and its square is added to the sum.

// integrate
RF factor =

ip.weight ()* globalgeo.integrationElement(ip.position ());
RF jump = gradun_i -gradun_o;

After summing up all local contributions, the result is multiplied with 1
2
hT and

added to the estimate on the element:

// accumulate indicator
auto h_T = diameter(globalgeo);
r_i.accumulate(lfsv_i ,0 ,0.5* h_T*sum);

Method alpha_boundary

The method alpha_boundary is largely identical with alpha_skeleton and there-
fore isn’t repeated here. All calculations concerning T+

F are dropped, and instead
the Neumann boundary condition value j is used in the calculation of the jump:

// Neumann boundary condition value

17

auto j = param.j(ig.intersection (),ip.position ());

// integrate
RF factor =

ip.weight ()* globalgeo.integrationElement(ip.position ());
RF jump = gradun_i+j;

Additionally, the final accumulation scales with hT , and not with 1
2
hT as the

alpha_skeleton method.

// accumulate indicator
auto h_T = diameter(globalgeo);

4.6 Running the Example

Now we can run the tutorial and look at the results. The program can be run by
typing

./ tutorial05

on the command line. It then produces some output on the console and VTK files
with the extension .vtu.

First, the program reports that it is run on one processor:

Parallel code run on 1 process(es)

Then the mesh file is read and some statistics about it are reported:

Reading 2d Gmsh grid ...
version 2.2 Gmsh file detected
file contains 375 nodes
file contains 754 elements
number of real vertices = 375
number of boundary elements = 74
number of elements = 674

Now an instance of a DUNE grid is created, the initial setup is performed, and the
refinement loop is started. The problem is solved on the initial mesh:

Iteration: 0 highest level in grid: 0
constrained dofs =74 of 375

Initial defect: 2.9656e-02
Newton iteration 1. New defect: 2.9206e-11. Reduction

(this): 9.8481e-10. Reduction (total): 9.8481e-10

Due to the missing reaction term q the problem is actually linear, and therefore it
is solved after just one Newton iteration. The program runs the error estimator and
reports an estimate for the error ‖u− uh‖ using the L2 norm:

Estimated error in step 0 is 0.285625

Then the program states that it performs the remaining tasks of the first iteration:

18

VTK output
mark elements
adapt grid and solution
Updating entity set
constraints and stuff

The current solution uh and the squared local error estimates are written out to a
VTK file. Then the elements are marked for refinement based on the chosen fraction
of elements and error estimate, the grid manager modifies the grid, and the solution
uh and the grid function space are updated to reflect these changes. This includes a
reevaluation of the constraints and the values of the Dirichlet boundary condition.
Then the solution vector can be used as an initial guess for the next iteration.

The loop runs for several iterations and produces similar output in each step.
The reported error estimates are:

Estimated error in step 0 is 0.285625
Estimated error in step 1 is 0.209272
Estimated error in step 2 is 0.145672
Estimated error in step 3 is 0.09893
Estimated error in step 4 is 0.0672581
Estimated error in step 5 is 0.0446733

The program also reports the number of elements after each refinement:

constrained dofs =74 of 375
constrained dofs =78 of 419
constrained dofs =90 of 647
constrained dofs =117 of 1409
constrained dofs =171 of 2957
constrained dofs =244 of 6804

These numbers can be collected in a table containing the refinement level, the
estimated error, the experimental order of convergence (EOC) for the error, the
number of elements, and the number of elements a globally refined mesh would
have:

level γ(uh) #T #Tglobal

0 0.286 375 375
1 0.209 419 1.5e3
2 0.146 647 6.0e3
3 0.099 1409 2.4e4
4 0.067 2957 9.6e4
5 0.045 6804 3.8e5

Figure 1 shows the final mesh and the corresponding solution uh. The discretiza-
tion error is almost completely restricted to the elements that touch the reentrant
corner in the point (0, 0) and therefore hard to visualize.

19

Figure 1: Solution on the finest mesh and underlying elements. The colormap for the
solution uses discrete intervals to make the large gradients in the reentrant corner
visible. Refinement has mainly occurred in this area, as can be seen on the right.

5 Outlook
The interested reader can proceed in different directions from here. The more obvi-
ous things are:

• Change the fraction of elements that is refined in each iteration and compare
the resulting meshes, error estimates and convergence behavior.

• Switch to a different grid manager and examine the resulting meshes for sim-
ilarities and differences.

• Test the reliability of the error estimate when a nonlinear function is used for
q, or use a different right hand side f .

References
[1] M. Ainsworth and J. T. Oden. A posteriori error estimation in finite element

analysis. Wiley, 2000.

[2] K. Eriksson, D. Estep, P. Hansbo, and C. Johnson. Computational Differential
Equations. Cambridge University Press, 1996. http://www.csc.kth.se/~jjan/
private/cde.pdf.

20

http://www.csc.kth.se/~jjan/private/cde.pdf
http://www.csc.kth.se/~jjan/private/cde.pdf

	Introduction
	Problem Formulation
	Adaptive Grid Refinement
	Realization in PDELab
	Ini-File
	Function main
	Function driver
	Classes Problem and NonlinearPoissonFEM
	Local Operator NonlinearPoissonFEMEstimator
	Running the Example

	Outlook

