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Motivation

I Provide a comparatively simple example of adaptive mesh refinement
I Build upon problem definition that is already familiar (tutorial 01)
I Integrate central steps into framework that was introduced for solution of PDEs
I Show where the approach could be extended and modified to suit other PDEs,

error norms or performance functionals
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Discretization Error

I FEM approach replaces solution space V , e.g., V = H1(Ω) plus constraints, with
finite-dimensional space Vh

I FEM solution uh ∈ Vh is approximation of solution u ∈ V
I Finite approximation leads to discretization error, which should be small:

‖u − uh‖ ≤ TOL

I ‖ · ‖ is suitable norm, e.g. L2 or H1 norm, TOL is user-supplied tolerance
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Central Aspects of Mesh Generation

I Number of degrees of freedom (dofs) important for applicability of method:
I Directly translates to memory requirements
I Determines computation time (together with mesh geometry)

I Keep number of dofs as small as possible while fulfilling requirements for error
norm ‖u − uh‖

I Discretization error u − uh is generally not known (else we wouldn’t need FEM!)
I A-priori error estimates are for worst case, i.e., may be overly pessimistic, don’t

provide spatially resolved information, and contain unknown constant
⇒ A-posteriori error estimates and iterative procedure required
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Derivation of Local Error Indicators
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PDE Problem

We consider the problem

−∆u + q(u) = f in Ω,
u = g on ΓD ⊆ ∂Ω,

−∇u · ν = j on ΓN = ∂Ω \ ΓD.

I q : R→ R is possibly nonlinear function
I f : Ω→ R the source term
I ν unit outer normal to the domain
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Weak Formulation

Find u ∈ U s.t.: rNLP(u, v) = 0 ∀v ∈ V ,

with the continuous residual form

rNLP(u, v) =
∫

Ω
∇u · ∇v + (q(u)− f )v dx +

∫
ΓN

jv ds

and the function spaces
I U = {v ∈ H1(Ω) : “v = g” on ΓD} (affine space)
I V = {v ∈ H1(Ω) : “v = 0” on ΓD}

We assume that a unique solution exists.
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For Derivation: Linear PDE Problem

The presented derivation of local error estimates requires that the PDE is linear. We
therefore consider

Find u ∈ U s.t.: rLP(u, v) = 0 ∀v ∈ V ,

with the continuous residual form

rLP(u, v) =
∫

Ω
∇u · ∇v + (cu − f̃ )v dx +

∫
ΓN

jv ds

i.e. q(u) = cu with a constant c ∈ R and a different right hand side f̃ , and later return
to the original nonlinear PDE.

7



Discretization Error Identity

Define discretization error e = u − uh ∈ V and bilinear form

a(u, v) =
∫

Ω
∇u · ∇v + cuv dx

Then we have, due to linearity of the PDE,

a(e, v) = a(u, v)− a(uh, v)
= rLP(u, v)− rLP(uh, v)
= −rLP(uh, v)

This provides an expression that does not depend on u and therefore can be
evaluated using the finite element solution uh!
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Element Residuals

a(e, v) = −rLP(uh, v)

= −
∫

Ω
∇uh · ∇v + (cuh − f̃ ) dx −

∫
ΓN

jv ds

= −
∑

T∈Th

{∫
T
∇uh · ∇v + (cuh − f̃ ) dx −

∫
∂T∩ΓN

jv ds
}

=
∑

T∈Th

{∫
T

RT v dx +
∫
∂T

R∂T v ds
}

with element residuals RT and element boundary residuals R∂T given by
RT = ∆uh + f̃ − cuh

R∂T =
{
−(∇uh) · ν on ∂T \ ΓN

−(∇uh) · ν − j on ∂T ∩ ΓN
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Face Residuals

There are three types of faces F ∈ Fh that contribute to ∂T :
I Interior faces F ∈ F i

h, appearing twice in the summation with changing orientation
I Neumann boundary faces F ∈ FN

h , these appear once
I Dirichlet boundary faces F ∈ FD

h , here v is zero

Define the face residuals RF for faces F ∈ F by setting

RF =
{

R∂T (T−) + R∂T (T +) = [−(∇uh) · νF ] F ∈ F i
h

R∂T (T−) = −(∇uh) · νF − j F ∈ FN
h

where T− and T + are the elements next to F , νF points from T− to T +, and [·] is
the jump operator for two-valued functions on F , i.e., [v ] = v(T−)− v(T +).
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Discretization Error Identity (cont.)

Using the element residuals RT and face residuals RF , we have

a(e, v) =
∑

T∈Th

∫
T

RT v dx +
∑

F∈F i
h∪F

N
h

∫
F

RF v ds

For any interpolation operator I : V → Vh we also have

a(e, Iv) =
∑

T∈Th

∫
T

RTIv dx +
∑

F∈F i
h∪F

N
h

∫
F

RFIv ds = 0

(uh is discrete solution!), and therefore

a(e, v) =
∑

T∈Th

∫
T

RT (v − Iv) dx +
∑

F∈F i
h∪F

N
h

∫
F

RF (v − Iv) ds
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Discretization Error Identity (cont.)

Using
I A specific choice of interpolation operator
I Matching interpolation error estimates (independent of problem definition!)
I Shape regularity of the finite element mesh

one can show that

a(e, v) =
∑

T∈Th

∫
T

RT (v − Iv) dx +
∑

F∈F i
h∪F

N
h

RF (v − Iv) ds

≤ C‖v‖1,Ω


∑

T∈Th

h2
T‖RT‖20,T +

∑
F∈F i

h∪F
N
h

hF‖RF‖20,F


1/2
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Error Estimate

Set v = e ∈ V and exploit coercivity ‖e‖21,Ω ≤ Ca(e, e), then

‖e‖1,Ω ≤ C


∑

T∈Th

h2
T‖RT‖20,T +

∑
F∈F i

h∪F
N
h

hF‖RF‖20,F


1/2

≤ C

∑
T∈Th

γ2
T


1/2

with the local error indicators

γ2
T = h2

T‖RT‖20,T +
∑

F∈∂T∩FN
h

hT‖RF‖20,F +
∑

F∈∂T∩F i
h

hT
2 ‖RF‖20,F

13



Return to nonlinear PDE problem

For the original nonlinear PDE, linearize residual form around ξ ∈ Vh and set

c = ∂q
∂u |ξ, f̃ = f − q(ξ) + ∂q

∂u |ξξ

The choice ξ = uh provides face residuals as before and element residuals

RT = ∆uh + f − q(uh)

This can be used to compute local error indicators, but the error inequality only holds
if uh is sufficiently close to u!
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Local Mesh Adaptation
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Basic Adaptation Algorithm

The basic algorithm works as follows:
1. Choose sufficiently fine starting mesh T0

2. Compute finite element solution uh on current mesh Th

3. Compute error estimate γ(uh), stop if γ(uh) ≤ TOL
4. Else refine mesh according to the local error indicators γT

5. Transfer current solution uh and use as initial guess
6. Go to step 2)
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Bulk Fraction Strategy

I Step 4) requires picking elements for refinement
I Assumption: spatial distribution of error is similar to that of assembled residuals

RT and RF (reasonable for diffusion-type problems)
I Sort elements according to increasing error contribution:

γ2
T1 ≤ γ

2
T2 ≤ · · · ≤ γ

2
TN

I For given ρ ∈ (0, 1], determine

J = max

j :
N∑

k=j
γ2

Tk ≥ ρ
∑

T∈Th

γ2
T


and refine elements TJ , . . . ,TN
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Bisection Refinement

∗

T0

∗
∗

T1

∗∗

�

T2 T3

I Refine by cutting element in two (use newest edge)
I Is simple (∗), but may lead to substantial non-local changes of the mesh

(T2 → T3, �)
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Regular Refinement

∗

T0

∗
T1

∗
T2 T3

I Refine by dividing local mesh width hT by two, produces smaller copies of original
element as result

I Requires bisection on the fringe to keep mesh conforming
I Shape regularity requires removal of bisection refinement in subsequent iterations

(T2 → T3)
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Refinement of Quadrilaterals

∗

T0

∗

T1

∗
T2 T3

I Regular refinement with conforming closure can be used with quadrilaterals
I Requires using triangular elements for the closure
I Hybrid mesh, no longer one universal reference element
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Hanging Nodes

∗

T0

∗

T1

∗
T2 T3

I Omitting closure keeps refinement local
I Straightforward and can also be used with triangles
I Resulting hanging nodes add constraints to the finite element space, i.e.,

complexity is shifted from mesh generation to assembly procedure
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Implementation in DUNE/PDELab
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Overview DUNE/PDELab Implementation

Files involved are:
1) File tutorial05.cc

I Includes C++, DUNE and PDELab header files
I Contains the main function
I Creates a finite element mesh and calls the driver

2) File tutorial05.ini
I Contains parameters controlling the program execution

3) File driver.hh
I Function driver, iteratively solving the finite element problem and refining the mesh

based on the calculated error estimate
4) File nonlinearpoissonfem.hh

I Class NonlinearPoissonFEM, realizing the necessary element-local computations for
the PDE (compare tutorial 01)

5) File nonlinearpoissonfemestimator.hh
I Class NonlinearPoissonFEMEstimator, realizing the necessary element-local

computations for the error estimate (implemented as local operator)
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