
DUNE/PDELab Course 2021

Speaker:

Ole Klein
IWR
Heidelberg University

DUNE PDELab Tutorial 05
Adaptivity in PDELab



Motivation

I Provide a comparatively simple example of adaptive mesh refinement
I Build upon problem definition that is already familiar (tutorial 01)
I Integrate central steps into framework that was introduced for solution of PDEs
I Show where the approach could be extended and modified to suit other PDEs,

error norms or performance functionals

1



Discretization Error

I FEM approach replaces solution space V , e.g., V = H1(Ω) plus constraints, with
finite-dimensional space Vh

I FEM solution uh ∈ Vh is approximation of solution u ∈ V
I Finite approximation leads to discretization error, which should be small:

‖u − uh‖ ≤ TOL

I ‖ · ‖ is suitable norm, e.g. L2 or H1 norm, TOL is user-supplied tolerance

2



Central Aspects of Mesh Generation

I Number of degrees of freedom (dofs) important for applicability of method:
I Directly translates to memory requirements
I Determines computation time (together with mesh geometry)

I Keep number of dofs as small as possible while fulfilling requirements for error
norm ‖u − uh‖

I Discretization error u − uh is generally not known (else we wouldn’t need FEM!)
I A-priori error estimates are for worst case, i.e., may be overly pessimistic, don’t

provide spatially resolved information, and contain unknown constant
⇒ A-posteriori error estimates and iterative procedure required

3



Derivation of Local Error Indicators

4



PDE Problem

We consider the problem

−∆u + q(u) = f in Ω,
u = g on ΓD ⊆ ∂Ω,

−∇u · ν = j on ΓN = ∂Ω \ ΓD.

I q : R→ R is possibly nonlinear function
I f : Ω→ R the source term
I ν unit outer normal to the domain

5



Weak Formulation

Find u ∈ U s.t.: rNLP(u, v) = 0 ∀v ∈ V ,

with the continuous residual form

rNLP(u, v) =
∫

Ω
∇u · ∇v + (q(u)− f )v dx +

∫
ΓN

jv ds

and the function spaces
I U = {v ∈ H1(Ω) : “v = g” on ΓD} (affine space)
I V = {v ∈ H1(Ω) : “v = 0” on ΓD}

We assume that a unique solution exists.

6



For Derivation: Linear PDE Problem

The presented derivation of local error estimates requires that the PDE is linear. We
therefore consider

Find u ∈ U s.t.: rLP(u, v) = 0 ∀v ∈ V ,

with the continuous residual form

rLP(u, v) =
∫

Ω
∇u · ∇v + (cu − f̃ )v dx +

∫
ΓN

jv ds

i.e. q(u) = cu with a constant c ∈ R and a different right hand side f̃ , and later return
to the original nonlinear PDE.

7



Discretization Error Identity

Define discretization error e = u − uh ∈ V and bilinear form

a(u, v) =
∫

Ω
∇u · ∇v + cuv dx

Then we have, due to linearity of the PDE,

a(e, v) = a(u, v)− a(uh, v)
= rLP(u, v)− rLP(uh, v)
= −rLP(uh, v)

This provides an expression that does not depend on u and therefore can be
evaluated using the finite element solution uh!

8



Element Residuals

a(e, v) = −rLP(uh, v)

= −
∫

Ω
∇uh · ∇v + (cuh − f̃ ) dx −

∫
ΓN

jv ds

= −
∑

T∈Th

{∫
T
∇uh · ∇v + (cuh − f̃ ) dx −

∫
∂T∩ΓN

jv ds
}

=
∑

T∈Th

{∫
T

RT v dx +
∫
∂T

R∂T v ds
}

with element residuals RT and element boundary residuals R∂T given by
RT = ∆uh + f̃ − cuh

R∂T =
{
−(∇uh) · ν on ∂T \ ΓN

−(∇uh) · ν − j on ∂T ∩ ΓN

9



Face Residuals

There are three types of faces F ∈ Fh that contribute to ∂T :
I Interior faces F ∈ F i

h, appearing twice in the summation with changing orientation
I Neumann boundary faces F ∈ FN

h , these appear once
I Dirichlet boundary faces F ∈ FD

h , here v is zero

Define the face residuals RF for faces F ∈ F by setting

RF =
{

R∂T (T−) + R∂T (T +) = [−(∇uh) · νF ] F ∈ F i
h

R∂T (T−) = −(∇uh) · νF − j F ∈ FN
h

where T− and T + are the elements next to F , νF points from T− to T +, and [·] is
the jump operator for two-valued functions on F , i.e., [v ] = v(T−)− v(T +).

10



Discretization Error Identity (cont.)

Using the element residuals RT and face residuals RF , we have

a(e, v) =
∑

T∈Th

∫
T

RT v dx +
∑

F∈F i
h∪F

N
h

∫
F

RF v ds

For any interpolation operator I : V → Vh we also have

a(e, Iv) =
∑

T∈Th

∫
T

RTIv dx +
∑

F∈F i
h∪F

N
h

∫
F

RFIv ds = 0

(uh is discrete solution!), and therefore

a(e, v) =
∑

T∈Th

∫
T

RT (v − Iv) dx +
∑

F∈F i
h∪F

N
h

∫
F

RF (v − Iv) ds

11



Discretization Error Identity (cont.)

Using
I A specific choice of interpolation operator
I Matching interpolation error estimates (independent of problem definition!)
I Shape regularity of the finite element mesh

one can show that

a(e, v) =
∑

T∈Th

∫
T

RT (v − Iv) dx +
∑

F∈F i
h∪F

N
h

RF (v − Iv) ds

≤ C‖v‖1,Ω


∑

T∈Th

h2
T‖RT‖20,T +

∑
F∈F i

h∪F
N
h

hF‖RF‖20,F


1/2

12



Error Estimate

Set v = e ∈ V and exploit coercivity ‖e‖21,Ω ≤ Ca(e, e), then

‖e‖1,Ω ≤ C


∑

T∈Th

h2
T‖RT‖20,T +

∑
F∈F i

h∪F
N
h

hF‖RF‖20,F


1/2

≤ C

∑
T∈Th

γ2
T


1/2

with the local error indicators

γ2
T = h2

T‖RT‖20,T +
∑

F∈∂T∩FN
h

hT‖RF‖20,F +
∑

F∈∂T∩F i
h

hT
2 ‖RF‖20,F

13



Return to nonlinear PDE problem

For the original nonlinear PDE, linearize residual form around ξ ∈ Vh and set

c = ∂q
∂u |ξ, f̃ = f − q(ξ) + ∂q

∂u |ξξ

The choice ξ = uh provides face residuals as before and element residuals

RT = ∆uh + f − q(uh)

This can be used to compute local error indicators, but the error inequality only holds
if uh is sufficiently close to u!

14



Local Mesh Adaptation

15



Basic Adaptation Algorithm

The basic algorithm works as follows:
1. Choose sufficiently fine starting mesh T0

2. Compute finite element solution uh on current mesh Th

3. Compute error estimate γ(uh), stop if γ(uh) ≤ TOL
4. Else refine mesh according to the local error indicators γT

5. Transfer current solution uh and use as initial guess
6. Go to step 2)

16



Bulk Fraction Strategy

I Step 4) requires picking elements for refinement
I Assumption: spatial distribution of error is similar to that of assembled residuals

RT and RF (reasonable for diffusion-type problems)
I Sort elements according to increasing error contribution:

γ2
T1 ≤ γ

2
T2 ≤ · · · ≤ γ

2
TN

I For given ρ ∈ (0, 1], determine

J = max

j :
N∑

k=j
γ2

Tk ≥ ρ
∑

T∈Th

γ2
T


and refine elements TJ , . . . ,TN

17



Bisection Refinement

∗

T0

∗
∗

T1

∗∗

�

T2 T3

I Refine by cutting element in two (use newest edge)
I Is simple (∗), but may lead to substantial non-local changes of the mesh

(T2 → T3, �)

18



Regular Refinement

∗

T0

∗
T1

∗
T2 T3

I Refine by dividing local mesh width hT by two, produces smaller copies of original
element as result

I Requires bisection on the fringe to keep mesh conforming
I Shape regularity requires removal of bisection refinement in subsequent iterations

(T2 → T3)

19



Refinement of Quadrilaterals

∗

T0

∗

T1

∗
T2 T3

I Regular refinement with conforming closure can be used with quadrilaterals
I Requires using triangular elements for the closure
I Hybrid mesh, no longer one universal reference element

20



Hanging Nodes

∗

T0

∗

T1

∗
T2 T3

I Omitting closure keeps refinement local
I Straightforward and can also be used with triangles
I Resulting hanging nodes add constraints to the finite element space, i.e.,

complexity is shifted from mesh generation to assembly procedure

21



Implementation in DUNE/PDELab

22



Overview DUNE/PDELab Implementation

Files involved are:
1) File tutorial05.cc

I Includes C++, DUNE and PDELab header files
I Contains the main function
I Creates a finite element mesh and calls the driver

2) File tutorial05.ini
I Contains parameters controlling the program execution

3) File driver.hh
I Function driver, iteratively solving the finite element problem and refining the mesh

based on the calculated error estimate
4) File nonlinearpoissonfem.hh

I Class NonlinearPoissonFEM, realizing the necessary element-local computations for
the PDE (compare tutorial 01)

5) File nonlinearpoissonfemestimator.hh
I Class NonlinearPoissonFEMEstimator, realizing the necessary element-local

computations for the error estimate (implemented as local operator)

23


