DUNEPPDEEGD COUISE 2021

DUNE PDELab Tutorial 05
 Adaptivity in PDELab

Speaker:

Ole Klein IWR
Heidelberg University

Motivation

- Provide a comparatively simple example of adaptive mesh refinement
- Build upon problem definition that is already familiar (tutorial 01)
- Integrate central steps into framework that was introduced for solution of PDEs
- Show where the approach could be extended and modified to suit other PDEs, error norms or performance functionals

Discretization Error

- FEM approach replaces solution space V, e.g., $V=H^{1}(\Omega)$ plus constraints, with finite-dimensional space V_{h}
- FEM solution $u_{h} \in V_{h}$ is approximation of solution $u \in V$
- Finite approximation leads to discretization error, which should be small:

$$
\left\|u-u_{h}\right\| \leq \mathrm{TOL}
$$

- $\|\cdot\|$ is suitable norm, e.g. L^{2} or H^{1} norm, TOL is user-supplied tolerance

Central Aspects of Mesh Generation

- Number of degrees of freedom (dofs) important for applicability of method:
- Directly translates to memory requirements
- Determines computation time (together with mesh geometry)
- Keep number of dofs as small as possible while fulfilling requirements for error norm $\left\|u-u_{h}\right\|$
- Discretization error $u-u_{h}$ is generally not known (else we wouldn't need FEM!)
- A-priori error estimates are for worst case, i.e., may be overly pessimistic, don't provide spatially resolved information, and contain unknown constant
\Rightarrow A-posteriori error estimates and iterative procedure required

Derivation of Local Error Indicators

PDE Problem

We consider the problem

$$
\begin{aligned}
-\Delta u+q(u) & =f \\
u & =g \\
-\nabla u \cdot \nu & =j
\end{aligned}
$$

in Ω,
on $\Gamma_{D} \subseteq \partial \Omega$, on $\Gamma_{N}=\partial \Omega \backslash \Gamma_{D}$.

- $q: \mathbb{R} \rightarrow \mathbb{R}$ is possibly nonlinear function
- $f: \Omega \rightarrow \mathbb{R}$ the source term
- ν unit outer normal to the domain

Weak Formulation

Find $u \in U$ s.t.: $\quad r^{N L P}(u, v)=0 \quad \forall v \in V$,
with the continuous residual form

$$
r^{\mathrm{NLP}}(u, v)=\int_{\Omega} \nabla u \cdot \nabla v+(q(u)-f) v d x+\int_{\Gamma_{N}} j v d s
$$

and the function spaces

- $U=\left\{v \in H^{1}(\Omega): " v=g "\right.$ on $\left.\Gamma_{D}\right\}$ (affine space)
- $V=\left\{v \in H^{1}(\Omega): " v=0 "\right.$ on $\left.\Gamma_{D}\right\}$

We assume that a unique solution exists.

For Derivation: Linear PDE Problem

The presented derivation of local error estimates requires that the PDE is linear. We therefore consider

$$
\text { Find } u \in U \text { s.t.: } \quad r^{\mathrm{LP}}(u, v)=0 \quad \forall v \in V
$$

with the continuous residual form

$$
r^{\mathrm{LP}}(u, v)=\int_{\Omega} \nabla u \cdot \nabla v+(c u-\tilde{f}) v d x+\int_{\Gamma_{N}} j v d s
$$

i.e. $q(u)=c u$ with a constant $c \in \mathbb{R}$ and a different right hand side \tilde{f}, and later return to the original nonlinear PDE.

Discretization Error Identity

Define discretization error $e=u-u_{h} \in V$ and bilinear form

$$
a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v+c u v d x
$$

Then we have, due to linearity of the PDE,

$$
\begin{aligned}
a(e, v) & =a(u, v)-a\left(u_{h}, v\right) \\
& =r^{L P}(u, v)-r^{L P}\left(u_{h}, v\right) \\
& =-r^{L P}\left(u_{h}, v\right)
\end{aligned}
$$

This provides an expression that does not depend on u and therefore can be evaluated using the finite element solution u_{h} !

Element Residuals

$$
\begin{aligned}
a(e, v) & =-r^{L P}\left(u_{h}, v\right) \\
& =-\int_{\Omega} \nabla u_{h} \cdot \nabla v+\left(c u_{h}-\tilde{f}\right) d x-\int_{\Gamma_{N}} j v d s \\
& =-\sum_{T \in \mathcal{T}_{h}}\left\{\int_{T} \nabla u_{h} \cdot \nabla v+\left(c u_{h}-\tilde{f}\right) d x-\int_{\partial T \cap \Gamma_{N}} j v d s\right\} \\
& =\sum_{T \in \mathcal{T}_{h}}\left\{\int_{T} R_{T} v d x+\int_{\partial T} R_{\partial T} v d s\right\}
\end{aligned}
$$

with element residuals R_{T} and element boundary residuals $R_{\partial T}$ given by

$$
\begin{aligned}
R_{T} & =\Delta u_{h}+\tilde{f}-c u_{h} \\
R_{\partial T} & = \begin{cases}-\left(\nabla u_{h}\right) \cdot \nu & \text { on } \partial T \backslash \Gamma_{N} \\
-\left(\nabla u_{h}\right) \cdot \nu-j & \text { on } \partial T \cap \Gamma_{N}\end{cases}
\end{aligned}
$$

Face Residuals

There are three types of faces $F \in \mathcal{F}_{h}$ that contribute to ∂T :

- Interior faces $F \in \mathcal{F}_{h}^{i}$, appearing twice in the summation with changing orientation
- Neumann boundary faces $F \in \mathcal{F}_{h}^{N}$, these appear once
- Dirichlet boundary faces $F \in \mathcal{F}_{h}^{D}$, here v is zero

Define the face residuals R_{F} for faces $F \in \mathcal{F}$ by setting

$$
R_{F}= \begin{cases}R_{\partial T}\left(T^{-}\right)+R_{\partial T}\left(T^{+}\right)=\left[-\left(\nabla u_{h}\right) \cdot \nu_{F}\right] & F \in \mathcal{F}_{h}^{i} \\ R_{\partial T}\left(T^{-}\right)=-\left(\nabla u_{h}\right) \cdot \nu_{F}-j & F \in \mathcal{F}_{h}^{N}\end{cases}
$$

where T^{-}and T^{+}are the elements next to F, ν_{F} points from T^{-}to T^{+}, and $[\cdot]$ is the jump operator for two-valued functions on F, i.e., $[v]=v\left(T^{-}\right)-v\left(T^{+}\right)$.

Discretization Error Identity (cont.)

Using the element residuals R_{T} and face residuals R_{F}, we have

$$
a(e, v)=\sum_{T \in \mathcal{T}_{h}} \int_{T} R_{T} v d x+\sum_{F \in \mathcal{F}_{h}^{i} \cup \mathcal{F}_{h}^{N}} \int_{F} R_{F} v d s
$$

For any interpolation operator $\mathcal{I}: V \rightarrow V_{h}$ we also have

$$
a(e, \mathcal{I} v)=\sum_{T \in \mathcal{T}_{h}} \int_{T} R_{T} \mathcal{I} v d x+\sum_{F \in \mathcal{F}_{h}^{i} \cup \mathcal{F}_{h}^{N}} \int_{F} R_{F} \mathcal{I} v d s=0
$$

(u_{h} is discrete solution!), and therefore

$$
a(e, v)=\sum_{T \in \mathcal{T}_{h}} \int_{T} R_{T}(v-\mathcal{I} v) d x+\sum_{F \in \mathcal{F}_{h}^{i} \cup \mathcal{F}_{h}^{N}} \int_{F} R_{F}(v-\mathcal{I} v) d s
$$

Discretization Error Identity (cont.)

Using

- A specific choice of interpolation operator
- Matching interpolation error estimates (independent of problem definition!)
- Shape regularity of the finite element mesh
one can show that

$$
\begin{aligned}
a(e, v) & =\sum_{T \in \mathcal{T}_{h}} \int_{T} R_{T}(v-\mathcal{I} v) d x+\sum_{F \in \mathcal{F}_{h}^{j} \cup \mathcal{F}_{h}^{N}} R_{F}(v-\mathcal{I} v) d s \\
& \leq C\|v\|_{1, \Omega}\left\{\sum_{T \in \mathcal{T}_{h}} h_{T}^{2}\left\|R_{T}\right\|_{0, T}^{2}+\sum_{F \in \mathcal{F}_{h}^{i} \cup \mathcal{F}_{h}^{N}} h_{F}\left\|R_{F}\right\|_{0, F}^{2}\right\}^{1 / 2}
\end{aligned}
$$

Error Estimate

Set $v=e \in V$ and exploit coercivity $\|e\|_{1, \Omega}^{2} \leq C a(e, e)$, then

$$
\begin{aligned}
\|e\|_{1, \Omega} & \leq C\left\{\sum_{T \in \mathcal{T}_{h}} h_{T}^{2}\left\|R_{T}\right\|_{0, T}^{2}+\sum_{F \in \mathcal{F}_{h}^{i} \cup \mathcal{F}_{h}^{N}} h_{F}\left\|R_{F}\right\|_{0, F}^{2}\right\}^{1 / 2} \\
& \leq C\left\{\sum_{T \in \mathcal{T}_{h}} \gamma_{T}^{2}\right\}^{1 / 2}
\end{aligned}
$$

with the local error indicators

$$
\gamma_{T}^{2}=h_{T}^{2}\left\|R_{T}\right\|_{0, T}^{2}+\sum_{F \in \partial T \cap \mathcal{F}_{h}^{N}} h_{T}\left\|R_{F}\right\|_{0, F}^{2}+\sum_{F \in \partial T \cap \mathcal{F}_{h}^{i}} \frac{h_{T}}{2}\left\|R_{F}\right\|_{0, F}^{2}
$$

Return to nonlinear PDE problem

For the original nonlinear PDE, linearize residual form around $\xi \in V_{h}$ and set

$$
c=\left.\frac{\partial q}{\partial u}\right|_{\xi}, \quad \tilde{f}=f-q(\xi)+\left.\frac{\partial q}{\partial u}\right|_{\xi} \xi
$$

The choice $\xi=u_{h}$ provides face residuals as before and element residuals

$$
R_{T}=\Delta u_{h}+f-q\left(u_{h}\right)
$$

This can be used to compute local error indicators, but the error inequality only holds if u_{h} is sufficiently close to u !

Local Mesh Adaptation

Basic Adaptation Algorithm

The basic algorithm works as follows:

1. Choose sufficiently fine starting mesh \mathcal{T}_{0}
2. Compute finite element solution u_{h} on current mesh \mathcal{T}_{h}
3. Compute error estimate $\gamma\left(u_{h}\right)$, stop if $\gamma\left(u_{h}\right) \leq$ TOL
4. Else refine mesh according to the local error indicators γ_{T}
5. Transfer current solution u_{h} and use as initial guess
6. Go to step 2)

Bulk Fraction Strategy

- Step 4) requires picking elements for refinement
- Assumption: spatial distribution of error is similar to that of assembled residuals R_{T} and R_{F} (reasonable for diffusion-type problems)
- Sort elements according to increasing error contribution:

$$
\gamma_{T_{1}}^{2} \leq \gamma_{T_{2}}^{2} \leq \cdots \leq \gamma_{T_{N}}^{2}
$$

- For given $\rho \in(0,1]$, determine

$$
J=\max \left\{j: \sum_{k=j}^{N} \gamma_{T_{k}}^{2} \geq \rho \sum_{T \in \mathcal{T}_{h}} \gamma_{T}^{2}\right\}
$$

and refine elements T_{J}, \ldots, T_{N}

Bisection Refinement

- Refine by cutting element in two (use newest edge)
- Is simple ($*$), but may lead to substantial non-local changes of the mesh $\left(\mathcal{T}_{2} \rightarrow \mathcal{T}_{3}, \square\right)$

Regular Refinement

\mathcal{T}_{0}

- Refine by dividing local mesh width h_{T} by two, produces smaller copies of original element as result
- Requires bisection on the fringe to keep mesh conforming
- Shape regularity requires removal of bisection refinement in subsequent iterations $\left(\mathcal{T}_{2} \rightarrow \mathcal{T}_{3}\right)$

Refinement of Quadrilaterals

\mathcal{T}_{0}

- Regular refinement with conforming closure can be used with quadrilaterals
- Requires using triangular elements for the closure
- Hybrid mesh, no longer one universal reference element

Hanging Nodes

- Omitting closure keeps refinement local
- Straightforward and can also be used with triangles
- Resulting hanging nodes add constraints to the finite element space, i.e., complexity is shifted from mesh generation to assembly procedure

Implementation in DUNE/PDELab

Overview DUNE/PDELab Implementation

Files involved are:

1) File tutorial05.cc

- Includes C++, DUNE and PDELab header files
- Contains the main function
- Creates a finite element mesh and calls the driver

2) File tutorial05.ini

- Contains parameters controlling the program execution

3) File driver.hh

- Function driver, iteratively solving the finite element problem and refining the mesh based on the calculated error estimate

4) File nonlinearpoissonfem.hh

- Class NonlinearPoissonFEM, realizing the necessary element-local computations for the PDE (compare tutorial 01)

5) File nonlinearpoissonfemestimator.hh

- Class NonlinearPoissonFEMEstimator, realizing the necessary element-local computations for the error estimate (implemented as local operator)

