Exercises for Tutorial09

Generating Local Operators

In tutorial09 we learned how to use the dune-codegen module to generate local
operators. In this exercise we will use this to generate some more complicated
discretizations.

The build directory of this exercise is

iwr-course-2021/release-build/dune-pdelab-tutorials/
— tutorialO9/exercise/task

The corresponding source directory can be found under

iwr-course -2021/dune/dune-pdelab-tutorials/tutorial09/
— exercise/task

or by following the symlink in the build directory

iwr-course -2021/release-build/dune-pdelab-tutorials/
< tutorial09/exercise/task/src_dir

Exercise 1 NAVIER STOKES

In this exercise we will implement the Navier Stokes equations for a flow around a
cylinder! on the two dimenisional domain € shown below and the time interval .

pOyi — VAU + p(Vi)i+ Vp =0 in Q 1)

V-i=0 in €2

Here @ : 2 x ¥ — R? is the unknown velocity field and p : Q x ¥ — R is the

unknown pressure. We assume that the kinematic viscosity v = 0.001 and the fluid
density p = 1 are constant. The domain () is a rectangle with a circular hole.

0.2

—

0.21
() r=0.05 0.41
0.2

2.2

1See http:/ /www.featflow.de/en/benchmarks/cfdbenchmarking/flow/dfg_benchmark2 re100.html
for a more detailed benchmark description

As boundary conditions we use

=0 on 99N (0,2.2) x [0,0.41]
3 . 041—z7 |
7= (1'5 4m o S(t)> on 0 x [0,0.41]
vVii—pi=0 on 2.2 x [0,0.41]

with the function
s(t) = {sm (%t) ift<4

1 else
The initial conditions are simply
ﬁ‘t:() - 0

Pli=o = 0.

A semi-discretization in space of this equation is: Find (i, pn) € U, X Qp with
P(Octin, Un)a + Th(Un, Phy Uns gn) =0 V(Uh, qn) € Vi X Qn
for appropriate function spaces Uy, V3, @ and residual

ra(t, p, ¥, q) = v(Vi, Vi)oo — (p, V- V)oa = (¢, V - t)ogq + p(VE), U)o (2)

Go to the source directory of this exercise. There you will find the files navier_stokes
< .ufl and navier_stokes.ini. Open the UFL file and implement the correct
residual for the spatial discretization and the correct boundary conditions. For
generating the C++ file and compiling go to the build directory and type

make navier_stokes

Help:

e UFL has a conditional:

A cond is True

conditional(cond, A, B) = .
B cond is False

UFL has grad(.) and div(.)

inner(.,.)*dx will do the right thing for all scalar products of equation (2).
Just make sure that the dimensions of the two arguments match.

UFL has a method sin(.).

Exercise 2 NONLINEAR POISSON WITH DISCONTINUOUS GALERKIN METHOD
In this exercise we will solve the nonlinear Poisson equation

—Au+q(u)=f inQ,

u=g on Jf2)

2

with the nonlinear function ¢(u) = nu* and the parameters functions

g(x) = ||[|3
f(z) = —=2d +ng(x)

using the discontinuous Galerkin (DG) method. In our case the dimension d is two
and the parameter n describes the strength of the nonlinearity. You can for example
set 7 = 2. We will focus on the implementation of this method in UFL to show the
power of this approach without going into details about the numerical method.?

In contrast to continuous Galerkin methods DG methods use piecewise polyno-
mial basis functions on the grid and allow for discontinuities along faces. In order
to get a discritzation that still approximates the solution of our PDE penalty terms
along the faces are introduced. Dirichlet boundary conditions are not build into the
ansatz space but enforced in a weak way like it was done in exercise01 using Nitsche
boundary condition.

A3 DG discretization of problem (3) reads the following: Find uy in U, with
rh(uh,vh) =0 Yo, € Vj,
with the residual

rn(u,v) = Z /Vu Vo +q(u)v — fo dx

TeTh

= > [{Vul o] + [ul({Ve},) = yelul[o] ds (4)

FeF, F

s /F(Vu,ﬁ)v+(u—g)(Vv,ﬁ) (i — g)v ds

FeBy,

We need to explain some notation: *

e Tn: Set of mesh elements. Use ...*dx in the UFL file for volume integrals.
You don’t need to care about the sum in front of the integral. UFL describes
only the local integrals and will do the right thing.

e Bj: Set of boundary faces. Use ...xds in the UFL file for integrals over
boundary faces.

e F,: Set of inner faces. Use ...*dS in the UFL file for integrals over inner
faces.

e 7: Unit outer normal vector pointing from the inner cell to the outer cell. In
the UFL file use n = FacetNormal(cell) (’+’)

2For further insight into DG methods see e.g. Di Pietro, Daniele Antonio and Ern, Alexandre:
Mathematical aspects of discontinuous Galerkin methods

3There are different DG discretizations. We use symmetric interior penalty here.

4For faces we sometimes refer to the inner or the outer cell. For a given face it doesn’t matter
which cell is the inner and which is the outer as long as it is always treated the same for this face.
This is not important for this exercise.

e {.}: Average of the values at the inside cell and the outside cell. Only makes
sense at faces. In the UFL file use avg(.).

e [.]: Value at the inside cell minus value at the outside cell. Only makes sense
at faces. In the UFL file use jump(.).

e 7p: Penalty parameter of the DG scheme. For this exercise we just choose
~vr = 100. A good choice of yr depends on the dimension, degree of your
discretization and geometry informations. See the book mentioned above for
further detail.

After reading all this text we can finally start doing some work:

1. Go to the source directory of this exercise. There you can find the files
nonlinear_poisson_dg.ufl and nonlinear_poisson_dg.mini and a target is
defined in the CMakeLists.txt file.

2. You need to implement the residual (4) in the UFL file.

