
DUNE PDELab Tutorial 03
Conforming Finite Elements for a

Nonlinear Heat Equation

DUNE/PDELab Team

February 5, 2021

Contents
1 Introduction 2

2 PDE Problem 2

3 Finite Element Method 3

4 Realization in PDELab 5
4.1 Ini-File . 6
4.2 Function main . 6
4.3 Parameter Class in problem.hh . 6
4.4 Function driver . 7
4.5 Spatial Local Operator . 10
4.6 Temporal Local Operator . 11
4.7 Running the Example . 12

5 Outlook 12

1

1 Introduction
In this tutorial we extend the elliptic problem from tutorial 01 to the time dependent
case. Following the method of lines a general approach to time-dependent problems
is presented.

Depends On

This tutorial depends on tutorial 01.

2 PDE Problem
In this tutorial we consider the following problem:

∂tu−∆u+ q(u) = f in Ω× Σ,

u = g on ΓD ⊆ ∂Ω,

−∇u · ν = j on ΓN = ∂Ω \ ΓD,

u = u0 at t = 0.

This problem is a straightforward extension of the stationary problem solved in
tutorial 01. The parameter functions f , g, j may now also depend on time and
(with some restrictions) the subdivision into Dirichlet and Neumann boundary can
be time-dependent as well. The initial condition u0 is a function of x ∈ Ω.

Multiplying with a test function and integrating in space results in the following
weak formulation [2]: Find u ∈ L2(t0, t0 + T ;ug + V (t)):

d

dt

∫
Ω

uv dx+

∫
Ω

∇u · ∇v + q(u)v − fv dx+

∫
ΓN

jv ds = 0
∀v ∈ V (t),
t ∈ Σ,

(1)

where V (t) = {v ∈ H1(Ω) : v = 0 on ΓD(t)} and H1(Ω) 3 ug(t)|ΓD
= g. This can

be written in a more compact way with residual forms as follows:

d

dt
mL2(u, v) + rNLP(u, v) = 0 ∀v ∈ V (t), t ∈ Σ.

where
mL2(u, v) =

∫
Ω

uv dx

is the new temporal residual form, actually the L2 inner product, and

rNLP(u, v) =

∫
Ω

∇u · ∇v + (q(u)− f)v dx+

∫
ΓN

jv ds,

is the spatial residual form known from tutorial 01. Under suitable assumptions it
can be shown that problem (1) has a unique solution, see [2] for the linear case.

2

3 Finite Element Method
In order to arrive at a fully discrete formulation we follow the method of lines
paradigm:

1) Choose a finite-dimensional test space Vh(t) ⊂ V (t). Then (1) results in a system
of ordinary differential equations for the coefficients zj(t) in the expansion of
uh(t) =

∑n
j=1(zj(t))jφj.

2) Choose an appropriate method to integrate the system of ordinary differential
equations (ODEs).

The finite-dimensional space we choose here is just the conforming finite element
space V k,d

h (Th, t) introduced in tutorial 01. It may now depend also on time due to
the time-dependent splitting of the boundary in Dirichlet and Neumann part. Also
the function uh,g(t) depends on time and we have uh(t) ∈ Uh(t) = uh,g(t) + Vh(t).

For the integration of the system of ODEs, subdivide the time interval into not
necessarily equidistant subintervals:

Σ = {t0} ∪ (t0, t1] ∪ . . . ∪ (tN−1, tN]

with t0 = t0, tN = t0 + T , tk−1 < tk for 1 ≤ k ≤ N and set the time step to
∆tk = tk+1 − tk.

One of the simplest ODE integrators is the one-step-θ rule which reads:

Find uk+1
h ∈ Uh(tk+1) s.t.:

1

∆tk
(mL2

h (uk+1
h , v; tk+1)−mL2

h (ukh, v; tk))+

θrNLP
h (uk+1

h , v; tk+1) + (1− θ)rNLP
h (ukh, v; tk) = 0 ∀v ∈ Vh(tk+1).

(2)

Reordering terms shows that this method results in the solution of a nonlinear
system per time step which has the same structure as before:

Find uk+1
h ∈ Uh(tk+1) s.t.: rθ,kh (uk+1

h , v) + sθ,kh (v) = 0 ∀v ∈ Vh(tk+1).

where

rθ,kh (u, v) = mL2
h (u, v; tk+1) + ∆tkθrNLP

h (u, v; tk+1),

sθ,kh (v) = −mL2
h (ukh, v; tk) + ∆tk(1− θ)rNLP

h (ukh, v; tk).

Implementation-wise the new residual form is comprised of a linear combination of
temporal and spatial residual forms.

The one step θ method results in the implicit Euler method for θ = 1, the
Crank-Nicolson method for θ = 1/2 and the explicit Euler method for θ = 0. A large
number of alternative methods are possible. In particular the class of Runge-Kutta
methods is introduced below.

Runge-Kutta Methods in Shu-Osher Form

For the temporal and spatial residual forms mh and rh, Runge-Kutta methods can
be written in the Shu-Osher form [6, 3]:

3

1. u(0)
h = ukh.

2. For i = 1, . . . , s ∈ N, find u(i)
h ∈ uh,g(tk + di∆t

k) + Vh(t
k+1):

s∑
j=0

[
aijmh

(
u

(j)
h , v; tk + dj∆t

k
)

+ bij∆t
krh

(
u

(j)
h , v; tk + dj∆t

k
)]

= 0 ∀v ∈ Vh(tk+1).

3. uk+1
h = u

(s)
h .

Here we assume that the same type of boundary condition holds through the interval
(tk, tk+1]. The parameter s denotes the number of stages of the scheme. An s-stage
scheme is given by the parameters

A =

 a10 . . . a1s
...

...
as0 . . . ass

 , B =

 b10 . . . b1s
...

...
bs0 . . . bss

 , d = (d0, . . . , ds)
T .

Explicit schemes are characterized by aij = 0 for j > i and bij = 0 for j ≥ i.
Diagonally implicit schemes are characterized by aij = bij = 0 for j > i. Fully
implicit schemes where A and B are full are not considered in PDELab. Without
loss of generality it can be assumed that aii = 1. Moreover, some diagonally implicit
schemes, in particular all those implemented in PDELab right now, satisfy bii = b ∀i.
This means that in case of a linear problem the matrix is the same in all steps
and needs to be assembled only once. PDELab allows you to add new schemes
by specifying A, B and d. All explicit Runge-Kutta methods and most implicit
Runge-Kutta methods can be brought to the Shu-Osher form. Some examples are:

• One step θ scheme (introduced above):

A =
[
−1 1

]
, B =

[
1− θ θ

]
, d = (0, 1)T .

Explicit/implicit Euler (θ ∈ {0, 1}), Crank-Nicolson (θ = 1/2).

• Heun’s second order explicit method

A =

[
−1 1 0
−1/2 −1/2 1

]
, B =

[
1 0 0
0 1/2 0

]
, d = (0, 1, 1)T .

• Alexander’s two-stage second order strongly S-stable method [1]:

A =

[
−1 1 0
−1 0 1

]
, B =

[
0 α 0
0 1− α α

]
, d = (0, α, 1)T

with α = 1−
√

2/2.

• Fractional step θ [4], three stage second order strongly A-stable scheme:

A =

 −1 1 0 0
0 −1 1 0
0 0 −1 1

 , B =

 θ(1− α) θα 0 0
0 θ′α θ′(1− α) 0
0 0 θ(1− α) θα

 , d = (0, θ, 1− θ, 1)T

with θ = 1 −
√

2/2, α = 2θ, θ′ = 1 − 2θ = 1 − α =
√

2 − 1. Note also that
θα = θ′(1− α) = 2θ2.

4

Explicit Time Stepping Schemes

Considering the case of the explicit Euler method (θ = 0) in (2) results in the
problem: Find uk+1

h ∈ Uh(tk+1) s.t.:

mL2
h (uk+1

h , v; t)−mL2
h (ukh, v; t) + ∆tkrNLP

h (ukh, v; t) = 0 ∀v ∈ Vh(tk+1).

For certain spatial schemes, e.g. finite volume or discontinuous Galerkin, and ex-
ploiting that mL2

h is bilinear, the corresponding algebraic system to be solved is
(block-) diagonal:

Dzk+1 = sk −∆tkqk. (3)

Moreover, a stability condition restricting the time step ∆tk has to be obeyed. The
maximum allowable time step can be computed explicitly for the simplest schemes
and depends on the mesh Th. For explicit time-stepping schemes therefore the
following algorithm is employed:

i) While traversing the mesh assemble the vectors sk and qk separately and com-
pute the maximum time step ∆tk.

ii) Form the right hand side bk = sk − ∆tkqk and “solve” the diagonal system
Dzk+1 = bk (can be done in one step).

This procedure can be applied also to more general time-stepping schemes such as
strong stability preserving Runge-Kutta methods [5].

4 Realization in PDELab
The structure of the code is very similar to that of tutorial 01. It consists of the
following files:

1) The ini-file tutorial03.ini holds parameters read by various parts of the code
which control the execution.

2) The main file tutorial03.cc includes the necessary C++, DUNE and PDELab
header files and contains the main function where the execution starts. The
purpose of the main function is to instantiate DUNE grid objects and call the
driver function.

3) File driver.hh instantiates the necessary PDELab classes for solving a nonlinear
instationary problem and finally solves the problem.

4) File nonlinearheatfem.hh contains the local operator classes NonlinearHeatFEM
and L2 realizing the spatial and temporal residual forms.

5) File problem.hh contains a parameter class which encapsulates the user-definable
part of the PDE problem.

5

4.1 Ini-File

The ini-file contains a few new parameters compared to tutorial 01. The fem section
contains a new parameter for the order of the time stepping scheme (so 1 would be
implicit Euler, 2 a second order scheme like Alexander’s 2 stage scheme):

[fem]
degree =2
torder =3
dt=0.02

and the problem section contains a parameter for the final time (the initial time t0
is always zero):

[problem]
eta =5.0
T=2.0

4.2 Function main

The main function is very similar to the one in tutorial 01. In order to simplify
things only the structured grids OneDGrid and YaspGrid are used.

4.3 Parameter Class in problem.hh

The parameter class provides all data of the PDE problem: Coefficient functions,
boundary and initial conditions. They all may depend on time now in comparison
to tutorial 01. In order to pass the time argument there are at least two options:

1) Extend the interface of all methods by an additional time argument.

2) Pass the evaluation time via a separate function and store the time in a private
data member for subsequent spatial evaluations.

The second approach is taken in PDELab as it allows the reuse of classes from
the stationary case. Interfaces of methods are not changed and only an additional
method needs to be provided. This new method on the class Problem has the
following implementation:

//! Set time in instationary case
void setTime (Number t_)
{

t = t_;
}

The method just stores the given time in an internal data member.
The use of the time is shown by the Dirichlet boundary condition extension

method implementing the function ug(x, t) = sin(2πt) ∗
∏d−1

i=1 sin2(πxi) sin2(10πxi):

//! Dirichlet extension
template <typename E, typename X>
Number g (const E& e, const X& x) const

6

{
auto global = e.geometry (). global(x);
Number s=sin (2.0* M_PI*t);
for (std:: size_t i=1; i<global.size (); i++)

s*=sin(global[i]*M_PI)*sin(global[i]*M_PI);
for (std:: size_t i=1; i<global.size (); i++)

s*=sin (10* global[i]*M_PI)*sin (10* global[i]*M_PI);
return s;

}

Note that there is no extra method for the initial condition. The method g is
assumed to provide the initial condition for the initial time.

4.4 Function driver

We now go through the changes in the function driver which are due to instation-
arity. The first change concerns the initialization of simulation time and set-up of
the parameter object:

RF time = 0.0;
RF eta = ptree.get("problem.eta",(RF)1.0);
Problem <RF> problem(eta);
problem.setTime(time);

Now a PDELab grid function can be constructed:

auto glambda = [&](const auto& e, const auto& x)
{return problem.g(e,x);};

auto g = Dune:: PDELab ::
makeInstationaryGridFunctionFromCallable(gv,glambda ,problem);

A new function makeInstationaryGridFunctionFromCallable is provided since
the grid function produced by it now also provides a method setTime to pass the
time argument. Note that the lambda closure and the parameter object need to
be provided as the setTime method is only on the parameter class and not on the
lambda closure.

Setting up the grid function space and interpolating the initial condition is the
same as before. Then the grid operator for the spatial part can be set up as in the sta-
tionary problem tutorial 01. We just use the new local operator NonlinearHeatFEM:

typedef NonlinearHeatFEM <Problem <RF>,FEM > LOP;
LOP lop(problem);
typedef Dune:: PDELab ::ISTL:: BCRSMatrixBackend <> MBE;
int degree = ptree.get("fem.degree",(int)1);
MBE mbe((int)pow (1+2* degree ,dim));
typedef Dune:: PDELab :: GridOperator <GFS ,GFS ,LOP ,MBE ,

RF,RF,RF,CC,CC> GO0;
GO0 go0(gfs ,cc ,gfs ,cc,lop ,mbe);

The temporal part is done similarly and just employs another local operator L2:

typedef L2<FEM > TLOP;

7

TLOP tlop;
typedef Dune:: PDELab :: GridOperator <GFS ,GFS ,TLOP ,MBE ,

RF,RF,RF,CC,CC> GO1;
GO1 go1(gfs ,cc ,gfs ,cc,tlop ,mbe);

Spatial and temporal part are now combined using the new class OneStepGridOperator
which can assemble the linear combinations needed in the Runge-Kutta methods:

typedef Dune:: PDELab :: OneStepGridOperator <GO0 ,GO1 > IGO;
IGO igo(go0 ,go1);

Linear solver backend and Newton method can be set up in the same way as
before, just using the OneStepGridOperator. Then a time-stepping scheme in the
form of the matrices A, B and the vector d introduced above needs to be selected.
Several classes are already provided and it is very easy to write your own class:

Dune:: PDELab :: OneStepThetaParameter <RF> method1 (1.0);
Dune:: PDELab :: Alexander2Parameter <RF> method2;
Dune:: PDELab :: Alexander3Parameter <RF> method3;

The selection mechanism for the time-stepping scheme is implemented by setting
a pointer to an appropriate method:

int torder = ptree.get("fem.torder",(int)1);
Dune:: PDELab :: TimeSteppingParameterInterface <RF >*

pmethod =& method1;
if (torder ==1) pmethod = &method1;
if (torder ==2) pmethod = &method2;
if (torder ==3) pmethod = &method3;
if (torder <1|| torder >3)

std::cout <<"torder␣not␣in␣[1,3]"<<std::endl;

Note that TimeSteppingParameterInterface is the interface from which all time
stepping parameter classes derive.

Then an object of class OneStepMethod can be instantiated. This class is able
to compute a single time step of a general Runge-Kutta one step method.

typedef Dune:: PDELab :: OneStepMethod <RF,IGO ,PDESOLVER ,Z,Z> OSM;
OSM osm(*pmethod ,igo ,pdesolver);
osm.setVerbosityLevel (2);

Before entering the time loop we set up VTK output for the instationary case.
Paraview has several ways to handle sequences of output files. Here we use an
advanced method that writes a special pvd-file providing the names of the files for
each individual step and the associated absolute time. This is particularly useful
when non-equidistant time steps are used. All the data files for the time steps are
put in a subdirectory in order not to clog your file system. The following code
creates a directory (the name is read from the ini-file):

stat = mkdir(filename.c_str(),S_IRWXU|S_IRWXG|S_IRWXO);
if(stat != 0 && stat != -1)

std::cout << "Error:␣Cannot␣create␣directory␣"
<< filename << std::endl;

8

}
int subsampling=ptree.get("output.subsampling",(int)1);
typedef Dune:: SubsamplingVTKWriter <GV> VTKWRITER;
VTKWRITER vtkwriter(gv,Dune:: refinementIntervals(subsampling));
typedef Dune:: VTKSequenceWriter <GV> VTKSEQUENCEWRITER;
VTKSEQUENCEWRITER vtkSequenceWriter(

Now a SubsamplingVTKWriter and a VTKSequenceWriter can be instantiated:

int subsampling=ptree.get("output.subsampling",(int)1);
typedef Dune:: SubsamplingVTKWriter <GV> VTKWRITER;
VTKWRITER vtkwriter(gv,Dune:: refinementIntervals(subsampling));
typedef Dune:: VTKSequenceWriter <GV> VTKSEQUENCEWRITER;
VTKSEQUENCEWRITER vtkSequenceWriter(

std:: make_shared <VTKWRITER >(vtkwriter),filename ,filename ,"");

filled with data

typedef Dune:: PDELab :: VTKGridFunctionAdapter <ZDGF > VTKF;
vtkSequenceWriter.addVertexData(std::shared_ptr <VTKF >(

new VTKF(zdgf ,"solution")));

and the first file is written

vtkSequenceWriter.write(time ,Dune::VTK:: appendedraw);

Now the time loop is under user control:

RF T = ptree.get("problem.T",(RF)1.0);
RF dt = ptree.get("fem.dt",(RF)0.1);
while (time <T-1e-8)

{
// assemble constraints for new time step
problem.setTime(time+dt);
Dune:: PDELab :: constraints(b,gfs ,cc);

// do time step
Z znew(z);
osm.apply(time ,dt,z,g,znew);

// accept time step
z = znew;
time+=dt;

// output to VTK file
vtkSequenceWriter.write(time ,Dune::VTK:: appendedraw);

}

First the final time and time step are read from the parameter file. Then, for each
time step the constraints are reassembled. Note that the boundary condition type is
not supposed to change within a time step, so all stages of the Runge-Kutta Method
will use the same constraints (but not necessarily the same values at the Dirichlet
boundary).

9

Then, the apply method of the one step method is used to advance one step in
time. Its arguments are the current time, the size of the time step dt, the coefficient
vector z of the old time step, the boundary condition function g used to interpolate
boundary conditions for the stages and, as last argument, the new coefficient vector
znew to be computed as a result.

In order to advance to the next time step the coefficient vector is copied and the
time variable is advanced. Finally, the output file for the time step is written.

Intentionally, the time loop is under user control to allow other things to be
done, e.g. choose adaptive time step size, proceeding to important absolute times,
writing only every nth output file and so on.

4.5 Spatial Local Operator

The file nonlinearheatfem.hh contains the two local operators for the spatial and
the temporal part. The class NonlinearHeatFEM implements the spatial part. It is
actually very easy since the main part can be reused from the NonlinearPoissonFEM
local operator implemented in tutorial 01 through public inheritance:

template <typename Param , typename FEM >
class NonlinearHeatFEM :

public NonlinearPoissonFEM <Param ,FEM >,
public Dune:: PDELab ::

InstationaryLocalOperatorDefaultMethods <double >
{

Param& param;
public:

//! Pass on constructor
NonlinearHeatFEM (Param& param_ , int incrementorder_ =0)

: NonlinearPoissonFEM <Param ,FEM >(param_ ,incrementorder_),
param(param_)

{}
//! set time for subsequent evaluation
void setTime (double t) {

param.setTime(t);
}

};

Just a few methods need to be added to the local operator. Default implementations
can be inherited from InstationaryLocalOperatorDefaultMethods. Here only the
method setTime needs to be implemented to pass on the time to the parameter class
for subsequent evaluations.

The following methods need to be provided by a local operator for instationary
computations:

void setTime (R t_)

to set the time for all subsequent method calls.

R getTime () const

to get the time set previously.

10

void preStep (RealType time , RealType dt, int stages)

This method is called at the beginning of a time step, before all stages.

void postStep ()

This method is called at the end of a time step, after all stages.

void preStage (RealType time , int r)

This method is called at the beginning of a Runge-Kutta stage, where r is the
number of the stage (starting with r = 1).

int getStage () const

Return the number of the current stage.

void postStage ()

Called after the intermediate result of a stage has been computed.

RealType suggestTimestep (RealType dt) const

In an explicit scheme this method can be called at the end of stage 1 to suggest a
stable time step for the explicit scheme.

4.6 Temporal Local Operator

The temporal local operator needs to implement the residual form related to the L2-
inner product. It could also be used to compute an L2 projection of some function.

Like in the spatial local operator we provide a finite element map as template
parameter and derive from some helpful classes to provide default implementations
of some methods:
template <typename FEM >
class L2

: public Dune:: PDELab :: FullVolumePattern ,
public Dune:: PDELab :: LocalOperatorDefaultFlags ,
public Dune:: PDELab ::

InstationaryLocalOperatorDefaultMethods <double >

The following flag indicates that we provide a pattern_volume method speci-
fying the sparsity pattern. Actually, this method is provided from the base class
FullVolumePattern:

enum { doPatternVolume = true };

The next flag indicates that just volume integrals depending on trial and test
functions are required:

enum { doAlphaVolume = true };

The implementation of alpha_volume is very similar to the reaction term in
tutorial 01. For efficiency reasons also jacobian_volume is provided as well as the
apply variants for matrix-free operation (which might be very useful here since
the mass matrix is well conditioned).

11

Figure 1: Solution of the nonlinear heat equation.

4.7 Running the Example

The example solves the nonlinear heat equation in 1, 2 and 3 space dimensions.
A two-dimensional result is illustrated in Figure 1. On the left boundary x = 0 a
function depending on time t and y-coordinate is given, all the other boundaries are
of Neumann type with zero flux. The solution exhibits the typical smoothing effect
of parabolic problems in space and time.

5 Outlook
Several ideas could be pursued from this example:

• Experiment with a rough initial condition, observe smoothing effect in time.

• Explore the monotonicity properties of the scheme by providing discontinuous
initial conditions and testing different polynomial degrees and temporal orders.

References
[1] R. Alexander. Diagonally implicit Runge-Kutta methods for stiff O. D. E.’s.

SIAM Journal on Numerical Analysis, 14(6):1006–1021, 1977.

[2] A. Ern and J.-L. Guermond. Theory and practice of finite element methods.
Springer, 2004.

[3] S. Gottlieb, D.I. Ketcheson, and C.W. Shu. Strong Stability Preserving Runge-
Kutta and Multistep Time Discretizations. World Scientific, 2011.

12

[4] Dominik Meidner and Thomas Richter. A posteriori error estimation for the
fractional step theta discretization of the incompressible navier–stokes equations.
Computer Methods in Applied Mechanics and Engineering, 288:45 – 59, 2015.

[5] C. W. Shu. Total-variation-diminishing time discretizations. SIAM J. Sci. Stat.
Comput., 9:1073, 1988.

[6] Chi W. Shu and Stanley Osher. Efficient implementation of essentially non-
oscillatory shock-capturing schemes. J. Comput. Phys., 77:439–471, 1988.

13

	Introduction
	PDE Problem
	Finite Element Method
	Realization in PDELab
	Ini-File
	Function main
	Parameter Class in problem.hh
	Function driver
	Spatial Local Operator
	Temporal Local Operator
	Running the Example

	Outlook

