DUNE/PDELab Course 2021

DUNE PDELab Tutorial 04

Finite Elements for the Wave Equation

Speaker:

Dominic Kempf Scientific Software Center Heidelberg University

Example Problem

In this tutorial we solve the wave equation formulated as a first order in time system. This way the example serves as a model for the treatment of systems of partial differential equations in PDELab.

$$\partial_{tt}u - c^2\Delta u = 0$$
 in $\Omega \times \Sigma$, (1a)
 $u = 0$ on $\partial\Omega$, (1b)
 $u = q$ at $t = 0$, (1c)
 $\partial_t u = w$ at $t = 0$, (1d)

where c is the speed of sound.

1

Renaming $u_0 = u$ and introducing $u_1 = \partial_t u_0 = \partial_t u$ we can write the wave equation as a system of two equations:

$$\begin{array}{lll} \partial_t u_1 - c^2 \Delta u_0 = 0 & \text{in } \Omega \times \Sigma, & (2\text{a}) \\ \partial_t u_0 - u_1 = 0 & \text{in } \Omega \times \Sigma, & (2\text{b}) \\ u_0 = 0 & \text{on } \partial \Omega, & (2\text{c}) \\ u_1 = 0 & \text{on } \partial \Omega, & (2\text{d}) \\ u_0 = q & \text{at } t = 0, & (2\text{e}) \\ u_1 = w & \text{at } t = 0. & (2\text{f}) \end{array}$$

Since $u_0=u=0$ on the boundary we also have $\partial_t u=u_1=0$ on the boundary. Alternatively, omit the boundary condition on u_1 .

2

Weak Formulation

Multiplying (2a) with the test function v_0 and (2b) with the test function v_1 and using integration by parts we arrive at the weak formulation: Find $(u_0(t), u_1(t)) \in U_0 \times U_1$ s.t.

$$d_{t}(u_{1}, v_{0})_{0,\Omega} + c^{2}(\nabla u_{0}, \nabla v_{0})_{0,\Omega} = 0 \quad \forall v_{0} \in U_{0}$$

$$d_{t}(u_{0}, v_{1})_{0,\Omega} - (u_{1}, v_{1})_{0,\Omega} = 0 \quad \forall v_{1} \in U_{1}$$
(3)

where we used the notation of the L^2 inner product $(u,v)_{0,\Omega}=\int_{\Omega}uv\ dx$.

3

An equivalent formulation to (3) that hides the system structure reads as follows:

$$d_{t} [(u_{0}, v_{1})_{0,\Omega} + (u_{1}, v_{0})_{0,\Omega}] + \left[c^{2}(\nabla u_{0}, \nabla v_{0})_{0,\Omega} - (u_{1}, v_{1})_{0,\Omega}\right] = 0 \quad \forall (v_{0}, v_{1}) \in U_{0} \times U_{1}$$

$$(4)$$

With the latter we readily identify the temporal and spatial residual forms:

$$m^{\text{WAVE}}((u_0, u_1), (v_0, v_1)) = (u_0, v_1)_{0,\Omega} + (u_1, v_0)_{0,\Omega}, \tag{5}$$

$$r^{\text{WAVE}}((u_0, u_1), (v_0, v_1)) = c^2(\nabla u_0, \nabla v_0)_{0,\Omega} - (u_1, v_1)_{0,\Omega}.$$
(6)

Trees of Function spaces

$$U = (V(\Omega_S))^d \times P(\Omega_S) \times \Phi(\Omega_D)$$

- Computer science way of representing mathematical expressions: Trees
- Expose internal nodes to users
 - ► Enable recursive bottom-up construction
 - Extract subtrees to pass to legacy subproblem code
- Tree structure mostly static after construction
 - Nodes are C++ templates with children as template arguments
 - Allows extensive compiler optimizations, including inlining of tree traversals

Linear Algebra

[fragile] Given an assembled residual $r = \mathcal{R}(\vec{u_0})$ and its Jacobian $A = \nabla \mathcal{R}_h$, we have to solve the linear problem

$$Az = r$$

to obtain a correction and calculate $u = u_0 - z$. Several options

Monolithic solve of Az = r

- No stability problems
- Often very difficult with standard iterative solvers

Exploiting structure of the coupling

- Does not require monolithic code base
- ▶ Matrix / vector data structures must contain structure for good performance
- Advanced preconditioners enable iterative solvers

Index Merging – Example

$$U=U_1\times U_2$$

- ightharpoonup Two Q_1 spaces on common mesh
- Each space has canonical order defined by vertex iteration
- Two merging strategies Lexicographic: Preserve structure of individual problems, separate matrix blocks for coupling Interleaved: Regard problem as

vector-valued version of scalar problem

Lexicographic merging

Merging + Blocking (I)

- ▶ Merging can be repeated at every tree node
 ⇒ recursive construction of index structure from function space structure
- Also support blocking during merging
 - Large blocks for extracting subproblem matrices
 - ▶ Small blocks for block-aware preconditioners and reduced memory usage

Merging + Blocking (II)

A Discontinuous Galerkin (DG) example:

All the DoF per entity have dense coupling and are blocked together

Ĉ

Realization in PDELab

- 1) The ini-file tutorial04.ini holds parameters controlling the execution.
- 2) Main file tutorial04.cc includes the necessary C++, DUNE and PDELab header files; contains main function; instantiates DUNE grid objects and calls the driver function
- 3) Function driver in file driver.hh instantiates the necessary PDELab classes and finally solves the problem.
- 4) File wavefem.hh contains the local operator classes WaveFEM and WaveL2 realizing the spatial and temporal residual forms.