Exercises for Tutorial03

Instationary Parabolic Equations

Exercise 1 GETTING TO KNOwW THE CODE

The code of tutorial03 solves the problem

Ou— Au+q(u) = f in Qx % =(0,1)%x (t, T, (1)
u(z,t) = g(x,t) on I'p C 0Q, (2)
—Vu(z,t) -1 = j(x,t) on 'y =00\ I'p, (3)
u(z,to) = uo(x) at t = tg (4)
with the following choices applied:

q(u) = nu* ()
f=0 (6)
I'p={x€0Q|zy=0} (7)

d—1
g(x,t) = sin(27t) H sin(7a;)? sin(107a;)? (8)
jan=0 )
uo(z) = g(x,0) =0 (10)
to = 0. (11)

The code to this exercise can be recompiled individually in your build direc-
tory by typing make:

[user@localhost]$ cd release-build/dune-pdelab-tutorials/
< tutorialO3/exercise/task
[user@localhost]$ make

The structure of the code is very similar to the previous tutorials, it consists of
the following files:

® exercise03.cc — main program,
e driver.hh — driver to solve problem on a gridview, hard-codes ty = 0
e problem.hh — problem parameter class, definitions of ¢(u), f, I'p, I'n, g and j

e nonlinearheatfem.hh instationary spatial and temporal local operators r(u, v, t)
and m(u, v, t) respectively .



As in the previous exercises you can control most of the settings through the ini-
file tutorialo3.ini. Get an overview of the configurable settings, compile and run
exercise03.

The program writes output with the extension pvd. This is one of several ways
to write VITK output for the instationary case, c.f. the documentation of the
tutorial03. The pvd-file can be visualized by ParaView and it consists of a col-
lection of the corresponding vtu-files. One big advantage of this approach is that
the physical time can be printed out. This can be achieved by using the “Annotate-
TimeFiler“ in ParaView.

Exercise 2 MAKING DISCRETIZATIONS EASILY EXCHANGEABLE

Step 1: Switching to the linear heat equation For the rest of the exercise
we want to consider the linear heat equation. Therefore the reaction term has to be
set to ¢ = 0. Recompile and rerun exercise03.cc and investigate the difference to
the nonlinear reaction term.

Hint for the rest of the exercise: For different runs of the simulation you can
change the output filename in tutorialO3.ini.

Since the initial problem (5)—(11) was nonlinear, Newton’s method is used to
solve the discretized equations. For the linear case it is sufficient to use the class
StationaryLinearProblemSolver. Search in the driver for the lines starting with

typedef Dune::PDELab::NewtonMethod<IGO,LS> PDESOLVER;
PDESOLVER pdesolver (igo,ls);

and change to the StationaryLinearProblemSolver.

Beware that it requires one extra tempate parameter, and its constructor expects
additional parameters too. Give the instance of the class StationaryLinearProblemSolver
also the name pdesolver. If you have problems with the construction of this solver
consider for example the code in the driver of tutorial00. Compile and run again.

The program reports the status of the solver. Get used to these different two out-
puts.

As a next step we want to use two spatial discretizations, i.e. Q; and Qs elements.
The degree of the spatial discretization can be changed in the ini-file. Currently Q;
elements are used. Please change to O, elements and rerun the simulation.

Step 2: Arbitrary one-step schemes We want to examine the numerical so-
lution under three different time discretization schemes — Implicit Euler, Crank-
Nicolson and Fractional-Step-6. In order to change the time discretization scheme
you will have to go to the file driver.hh and search for the line

Dune::PDELab::Alexander2Parameter <RF> pmethod;

Change this to use the Dune::PDELab: :ImplicitEulerParameter<RF>, compile and
rerun the simulation. The program reports the progress of the time stepping and



the method used. Convince yourself that you are using indeed the Implicit Euler.
The other two time stepping methods can be applied similarly.

Note that there is no special one step parameter class for Crank-Nicolson.
Crank-Nicolson is however the special case of the one step 6 scheme with 6 = 0.5.
You can create a parameter object for Crank-Nicolson with:

Dune::PDELab::0neStepThetaParameter <RF> pmethod (0.5) ;

A parameter object for the Fractional Step 6 scheme can be created with:

Dune: :PDELab::FractionalStepParameter <RF> pmethod;

Step 3: Different Initial and Boundary Conditions

Consider the initial and boundary conditions (5)—(11)
modified as follows:

Lp=0 (12)

uo(x) = g(x,0) = ﬁmin{l,maX{O, f(xl)}} (13)

i=0
- f(€) :==0.5—8(|¢ — 0.5] — 0.25)
0 j(z,t) = 0. (14)
Figure 1: Initial condi- The initial condition given by 1y models a block of con-
tions stant 1 concentration in the middle, constant 0 concen-
tration at the border and some linear decrease in be-
tween.

On a 16 x 16 or finer grid the initial values can be represented exactly by Q;
and O, finite elements. The exact solution will instantly become smooth and tend
toward the mean over time. A computed solution is only an approximation, and
may show different behavior. Most often it may take a long time for the solution to
become smooth and, depending on the time stepping scheme used, there are spikes
oscillating from one time step to the next.

Please implement the initial and boundary conditions (12)—(14). Compile and
run your program. Remember that the grid needs 16 x 16 elements for the Q;/Q»
elements to resolve the initial condition exactly. What happens to the interpolated
initial condition if you use a coarser mesh?

Step 4: Investigate Maximum Principle With these preparations done, it
is now time to actually check how the different discretizations perform. Run your
program to produce some output that you can examine in ParaView. Change the
settings in the ini-file to a 64 x 64 grid and the time step size <dt>= 1/64 = 0.015625.
Run the simulation until <tend>= 4-dt. When examining the solution in ParaView,
apply the “Warp by Scalar” filter to get an image distorted into the third dimension
according to the values of the solution.




After one time step, the solution computed by Q; finite elements with Implicit
Euler time stepping should be completely smooth. The same goes for Qy with
Implicit Euler.

With both Crank-Nicolson and Fractional Step 6, both with Q; and Qs the
solution should be quite non-smooth, i.e. there should be some edges visible. The
Fractional Step 6 scheme should be smoother than Crank-Nicolson.

Try to run the simulation with smaller time steps. How small do you need to
make the time steps to get smooth solutions with Fractional Step 67

Can you get the Crank-Nicolson scheme to produce smooth solutions as well?

Exercise 3 TIME DEPENDENT g AND j

Consider now the initial and boundary conditions (5)—(11) time dependent:

I'p={xe€d]|zy=0} (
g(z,t) =1t/10 (16
uolr) = g, 0) (
j(z,t) = —(0.5 + cos(t)/2). (

Incorporating the time dependence into the functions g and j is easy even if they
don’t have the time variable as an argument. The problem parameter class possesses
the member variable t and the member function

void setTime (Number t_)

by means of which the correct time is always available. Please implement the con-
ditions (15)—(18), compile and rerun the program. You might also want to increase
the final time of the simulation. Examine the results in ParaView with the “Warp
by Scalar” filter.

A short note on time dependent I'p, and I'y: In principle it is possible to
implement time dependent I'p and I'y the same way as for g and 5. But for con-
forming spatial discretizations there is an important limiting assumption, namely
that the type of boundary conditions do not change over a time step.




