
Exercises for Tutorial05

Adaptivity

Exercise 1 Playing with the Parameters

The adaptive finite element algorithm is controlled by several parameters which can
be set in the ini-file. Besides the polynomial degree these are:

• steps : how many times the solve– adapt cycle is executed.

• uniformlevel : how many times uniform mesh refinement is used before adap-
tive refinement starts.

• tol : tolerance where the adaptive algorithm is stopped.

• fraction : Remember that the global error is estimated from element-wise
contributions:

γ2(uh) =
∑
T∈Th

γ2
T (uh).

The fraction parameter controls which elements are marked for refinement.
More precisely, the largest threshold γ∗ is determined such that∑

{T∈Th : γT (uh)≥γ∗}

γ2
T (uh) ≥ fraction · γ2(uh).

If fraction is set to zero no elements need to be refined, i.e. γ∗ = ∞. When
fraction is set to one then all elements need to be refined, i.e. γ∗ = 0. A
smaller fraction parameter results in a more optimized mesh but needs more
steps and thus might be more expensive. If fraction is chosen too large then
almost all elements are refined which might also be expensive, so there exists
an (unknown) optimal value for fraction.

Carry out the following experiments:

1. Choose polynomial degree 1 and fix a tolerance, e.g. tol=0.01. Set steps to
a large number so that the algorithm is not stopped before the tolerance is
reached. Set uniformlevel to zero. Now vary the fraction parameter and
measure the execution time with

$ time ./ exercise05

2. Repeat the previous experiment with polynomial degrees two and three. Com-
pare the optimal meshes generated for the different polynomial degrees.

1

3. The idea of the heuristic refinement algorithm refining only the elements with
the largest contribution to the error is to equilibrate the error. To check how
well this is achieved use the calculator filter in ParaView (use cell data) to
plot log(γT (uh)). Note that the cell data exported by the (unchanged) code
is γ2

T (uh)! Now check the minimum and maximum error contributions. What
happens directly at the singularity, i.e. the point (0, 0)?

Exercise 2 Compute the True L2-error

Disclaimer: In this exercise we compute and evalute the L2-norm of the error. The
residual based error estimator implemented in the code, however, estimates the H1-
seminorm (which is equivalent to the H1-norm here) and thus also optimizes the
mesh with respect to that norm. This is done to make the exercise as simple as
possible. It would be more appropriate to carry out the experiments either with the
true H1-norm or to change the estimator to the L2-norm.

To do this exercise we need some more background on PDELab grid functions.
The following code known from several tutorials by now constructs a PDELab grid
function object g:

Problem <RF > problem(eta);

auto glambda =

[&](const auto& e, const auto& x){ return problem.g(e,x);};

auto g = Dune:: PDELab :: makeGridFunctionFromCallable(gv ,glambda);

Also the following code segment used in many tutorials constructs a PDELab grid
function object zdgf from a grid function space and a coefficient vector:

typedef Dune:: PDELab :: DiscreteGridFunction <GFS ,Z> ZDGF;

ZDGF zdgf(gfs ,z);

PDELab grid functions can be evaluated in local coordinates given by an element
and a local coordinate within the corresponding reference element. The result is
stored in an additional argument passed by reference. Here is a code segment doing
the job:

Dune:: FieldVector <RF ,1> truesolution (0.0);

g.evaluate(e,x,truesolution);

Here we assume that e is an element and x is a local coordinate. The result is stored
in a Dune::FieldVector with one component of type RF. This allows also to return
vector-valued results.

Now here are your tasks:

1. Extend the code in the file driver.hh in tutorial05/exercise/task to provide
a grid function that provides the error u− uh. Note that the method g in the
parameter class already returns the true solution (for η = 0). You can solve
this task by writing a lambda function subtracting the values returned by
g.evaluate and zdgf.evaluate.

2

2. Compute the L2-norm of the error, i.e. ‖u − uh‖0 =
√∫

Ω
(u(x)− uh(x))2 dx.

This can be done by creating a grid function with the squared error using
Dune::PDELab::SqrGridFunctionAdapter from <dune/pdelab/function/sqr.hh>

and the function Dune::PDELab::integrateGridFunction contained in the header
file <dune/pdelab/common/functionutilities.hh>. Output the result to the
console by writing in a single line a tag like L2ERROR, the number of degrees
of freedom using gfs.globalSize() and the L2-norm. This lets you grep the
results later for post-processing.

3. Investigate the L2-error for different polynomial degrees. Run the code using
different polynomial degrees and also uniform and adaptive (use your optimal
fraction) refinement. Use gnuplot to produce graphs such as those in Figure
1. An example gnuplot file plot.gp is given.

The graph shows that for uniform refinement polynomial degree 2 is better
than polynomial degree 1 only by a constant factor. For adaptive refinement
a better convergence rate can be achieved. The plot also shows that for adap-
tive refinement the optimal convergence rate can be recovered. For P1 finite
elements and fully regular solution in H2(Ω) the a-priori estimate for uniform
refinement yields ‖u − uh‖0 ≤ Ch2. Expressing h in terms of the number of
degrees of freedom N yields h ∼ N−1/d, so ‖u − uh‖0 ≤ Ch2 ≤ C ′N−1 for
d = 2. The curve N−1 is shown for comparison in the plot. Clearly, the result
for P1 is parallel to that line.

4. Optional: Also write the true error to the VTK output file.

3

0.00000001

0.00000010

0.00000100

0.00001000

0.00010000

0.00100000

0.01000000

 100 1000 10000 100000 1x10
6

 1x10
7

L
2
 E

rr
o

r

degrees of freedom

uniform P1
uniform P2
adaptive P1
adaptive P2

1/N

Figure 1: L2-error versus number of degrees of freedom for different polynomial
degrees.

4

