
Exercises for Tutorial00

Poisson Equation

Exercise 1 Poisson Equation with Piecewise Linear Elements

In this exercise you will:

• Work on the problem presented in the tutorial and see how the code works.

• Modify the implementation to solve a slightly different problem.

• Determine the convergence rate of the finite element method.

1. Warming up:
The code presented in this tutorial solves the following elliptic equation with
Dirichlet boundary conditions

−∆u = f in Ω,
u = g on ∂Ω,

where

f(x) = −2d and g(x) =
d∑

i=1

(x)2
i .

First of all check that u(x) =
∑d

i=1(x)2
i is a solution for any dimension d.

2. This program solves this equation for d = 2. The executable can be found in
the build directory of this exercise:

cd iwr -course -2021/ release -build/dune -pdelab -tutorials/

↪→ tutorial00/exercise/task

You can run the program with ./exercise00. Some parameters of the program
are controlled by the ini file src_dir/tutorial00.ini:

[grid]

refinement =4

[grid.twod]

filename=unitsquare.msh

[output]

filename=solution_4
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Here you may set the mesh refinement and the names of the input and output
files. Run the program with different refinement levels. Visualize the solution
in ParaView, use the Calculator filter to visualize the difference |u − uh| and
determine the maximum error. Note that u and uh are called exact and fesol

in the ParaView output.

3. Solving a new problem:
Now consider

f(x) = −
d∑

i=1

6(x)i and g(x) =
d∑

i=1

(x)3
i (1)

and check that u(x) =
∑d

i=1(x)3
i solves the PDE. Implement the new f and g,

rebuild and rerun your program.

4. Analysis of finite element error:
Produce a sequence of output files for different levels of mesh refinements
0, 1, 2, . . . with suitable output filenames. Visualize the error |u− uh| in Para-
View and determine the maximum error on each level. If you want you can
also try to calculate the L2-norm of the error in ParaView and determine the
convergence rate by hand. In a later exercise you will see how to calculate the
L2-norm directly in the C++ source.

5. Use a different solver:
You may also try to exchange the iterative linear solver by replacing it with
the following lines in the driver file driver.hh:

typedef Dune:: PDELab :: ISTLBackend_SEQ_BCGS_SSOR LS;

LS ls(5000, true);

Compare the number of iterations which is given by the following lines in the
output (here we have 12 iterations):

=== CGSolver

12 1.9016e-09

=== rate =0.144679 , T=0.02362 , TIT =0.00196833 , IT=12

Exercise 2 Extending the Local Operator

Now consider the extended equation of the form

−∇ · (k(x)∇u) + a(x)u = f in Ω,
u = g on ∂Ω,

(2)

with scalar functions k(x), a(x).

1. In the first step show that the weak formulation of the problem involves the
new bilinear form

a(u, v) =

∫
Ω

k(x)∇u(x) · ∇v(x) + a(x)u(x)v(x) dx. (3)
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2. The main work is to extend the local operator given by the class PoissonP1.
This can be done in several steps:

• Copy the class PoissonP1 to a new file and rename it.

• Provide analytic functions for k(x) and a(x) and pass grid functions to
the local operator like it is done for f(x).

• Extend the local operator to first handle k(x) by assuming the function
k(x) to be constant on mesh elements.

• Now extend the local operator to handle a(x)u(x). Also assume the
function a(x) to be constant on mesh elements.

3. Plug in your new local operator in the driver code and test it. In the solution
the code is tested for k(x) = (x)1, a(x) =

∑d
i=1(x)i and g =

∑d
i=1(x)3

i by

choosing the right hand side f(x) in such a way that u(x) =
∑d

i=1(x)3
i solves

the PDE.

3


